Author | Devroye, Luc. author |
---|---|
Title | Combinatorial Methods in Density Estimation [electronic resource] / by Luc Devroye, Gรกbor Lugosi |
Imprint | New York, NY : Springer New York : Imprint: Springer, 2001 |
Connect to | http://dx.doi.org/10.1007/978-1-4613-0125-7 |
Descript | XII, 209 p. online resource |
1. Introduction -- ยง1.1. References -- 2. Concentration Inequalities -- ยง2.1. Hoeffdingโs Inequality -- ยง2.2. An Inequality for the Expected Maximal Deviation -- ยง2.3. The Bounded Difference Inequality -- ยง2.4. Examples -- ยง2.5. Bibliographic Remarks -- ยง2.6. Exercises -- ยง2.7. References -- 3. Uniform Deviation Inequalities -- ยง3.1. The Vapnik-Chervonenkis Inequality -- ยง3.2. Covering Numbers and Chaining -- ยง3.3. Example: The Dvoretzky-Kiefer-Wolfowitz Theorem -- ยง3.4. Bibliographic Remarks -- ยง3.5. Exercises -- ยง3.6. References -- 4. Combinatorial Tools -- ยง4.1. Shatter Coefficients -- ยง4.2. Vapnik-Chervonenkis Dimension and Shatter Coefficients -- ยง4.3. Vapnik-Chervonenkis Dimension and Covering Numbers -- ยง4.4. Examples -- ยง4.5. Bibliographic Remarks -- ยง4.6. Exercises -- ยง4.7. References -- 5. Total Variation -- ยง5.1. Density Estimation -- ยง5.2. The Total Variation -- ยง5.3. Invariance -- ยง5.4. Mappings -- ยง5.5. Convolutions -- ยง5.6. Normalization -- ยง5.7. The Lebesgue Density Theorem -- ยง5.8. LeCamโs Inequality -- ยง5.9. Bibliographic Remarks -- ยง5.10. Exercises -- ยง5.11. References -- 6. Choosing a Density Estimate -- ยง6.1. Choosing Between Two Densities -- ยง6.2. Examples -- ยง6.3. Is the Factor of Three Necessary? -- ยง6.4. Maximum Likelihood Does not Work -- ยง6.5. L2 Distances Are To Be Avoided -- ยง6.6. Selection from k Densities -- ยง6.7. Examples Continued -- ยง6.8. Selection from an Infinite Class -- ยง6.9. Bibliographic Remarks -- ยง6.10. Exercises -- ยง6.11. References -- 7. Skeleton Estimates -- ยง7.1. Kolmogorov Entropy -- ยง7.2. Skeleton Estimates -- ยง7.3. Robustness -- ยง7.4. Finite Mixtures -- ยง7.5. Monotone Densities on the Hypercube -- ยง7.6. How To Make Gigantic Totally Bounded Classes -- ยง7.7. Bibliographic Remarks -- ยง7.8. Exercises -- ยง7.9. References -- 8. The Minimum Distance Estimate: Examples -- ยง8.1. Problem Formulation -- ยง8.2. Series Estimates -- ยง8.3. Parametric Estimates: Exponential Families -- ยง8.4. Neural Network Estimates -- ยง8.5. Mixture Classes, Radial Basis Function Networks -- ยง8.6. Bibliographic Remarks -- ยง8.7. Exercises -- ยง8.8. References -- 9. The Kernel Density Estimate -- ยง9.1. Approximating Functions by Convolutions -- ยง9.2. Definition of the Kernel Estimate -- ยง9.3. Consistency of the Kernel Estimate -- ยง9.4. Concentration -- ยง9.5. Choosing the Bandwidth -- ยง9.6. Choosing the Kernel -- ยง9.7. Rates of Convergence -- ยง9.8. Uniform Rate of Convergence -- ยง9.9. Shrinkage, and the Combination of Density Estimates -- ยง9.10. Bibliographic Remarks -- ยง9.11. Exercises -- ยง9.12. References -- 10. Additive Estimates and Data Splitting -- ยง10.1. Data Splitting -- ยง10.2. Additive Estimates -- ยง10.3. Histogram Estimates -- ยง10A. Bibliographic Remarks -- ยง10.5. Exercises -- ยง10.6. References -- 11. Bandwidth Selection for Kernel Estimates -- ยง11.1. The Kernel Estimate with Riemann Kernel -- ยง11.2. General Kernels, Kernel Complexity -- ยง11.3. Kernel Complexity: Univariate Examples -- ยง11.4. Kernel Complexity: Multivariate Kernels -- ยง11.5. Asymptotic Optimality -- ยง11.6. Bibliographic Remarks -- ยง11.7. Exercises -- ยง11.8. References -- 12. Multiparameter Kernel Estimates -- ยง12.1. Multivariate Kernel EstimatesโProduct Kernels -- ยง12.2. Multivariate Kernel EstimatesโEllipsoidal Kernels -- ยง12.3. Variable Kernel Estimates -- ยง12.4. Tree-Structured Partitions -- ยง12.5. Changepoints and Bump Hunting -- ยง12.6. Bibliographic Remarks -- ยง12.7. Exercises -- ยง12.8. References -- 13. Wavelet Estimates -- ยง13.1. Definitions -- ยง13.2. Smoothing -- ยง13.3. Thresholding -- ยง13.4. Soft Thresholding -- ยง13.5. Bibliographic Remarks -- ยง13.6. Exercises -- ยง13.7. References -- 14. The Transformed Kernel Estimate -- ยง14.1. The Transformed Kernel Estimate -- ยง14.2. Box-Cox Transformations -- ยง14.3. Piecewise Linear Transformations -- ยง14.4. Bibliographic Remarks -- ยง14.5. Exercises -- ยง14.6. References -- 15. Minimax Theory -- ยง15.1. Estimating a Density from One Data Point -- ยง15.2. The General Minimax Problem -- ยง15.3. Rich Classes -- ยง15.4. Assouadโs Lemma -- ยง15.5. Example: The Class of Convex Densities -- ยง15.6. Additional Examples -- ยง15.7. Tuning the Parameters of Variable Kernel Estimates -- ยง15.8. Sufficient Statistics -- ยง15.9. Bibliographic Remarks -- ยง15.10. Exercises -- ยง15.11. References -- 16. Choosing the Kernel Order -- ยง16.1. Introduction -- ยง16.2. Standard Kernel Estimate: Riemann Kernels -- ยง16.3. Standard Kernel Estimates: General Kernels -- ยง16.4. An Infinite Family of Kernels -- ยง16.5. Bibliographic Remarks -- ยง16.6. Exercises -- ยง16.7. References -- 17. Bandwidth Choice with Superkernels -- ยง17.1. Superkernels -- ยง17.2. The Trapezoidal Kernel -- ยง17.3. Bandwidth Selection -- ยง17.4. Bibliographic Remarks -- ยง17.5. Exercises -- ยง17.6. References -- Author Index