Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorSoon, Frederick H. author
TitleStudent's Guide to Calculus by J. Marsden and A. Weinstein [electronic resource] : Volume II / by Frederick H. Soon
ImprintNew York, NY : Springer New York, 1985
Connect to
Descript XIV, 282 p. online resource


This Student Guide is exceptional, maybe even unique, among such guides in that its author, Fred Soon, was actually a student user of the textbook during one of the years we were writing and debugging the book. (He was one of the best students that year, by the way. ) Because of his background, Fred has taken, in the Guide, the point of view of an experienced student tutor helping you to learn calculus. \ĩle we do not always think Fred's jokes are as funny as he does, we appreciate his enthusiasm and his desire to enter into communication with his readers; since we nearly always agree with the matheยญ matical judgements he has made in explaining the material, we believe that this Guide can serve you as a valuable supplement to our text. To get maximum benefit from this Guide, you should begin by spending a few moments to acquaint yourself with its structure. Once you get started in the course, take advantage of the many opportunities which the text and Student Guide together provide for learning calculus in the only way that any matheยญ matical subject can truly be mastered - through attempting to solve problems on your own. As you read the text, try doing each example and exercise yourยญ self before reading the solution; do the same with the quiz problems provided by Fred


7 -- Basic Methods of Integration -- 7.1 Calculating Integrals -- 7.2 Integration by Substitution -- 7.3 Changing Variables in the Definite Integral -- 7.4 Integration by Parts -- 7.R Review Exercises for Chapter 7 -- 8 -- Differential Equations -- 8.1 Oscillations -- 8.2 Growth and Decay -- 8.3 The Hyperbolic Functions -- 8.4 The Inverse Hyperbolic Functions -- 8.5 Separable Differential Equations -- 8.6 Linear First-Order Equations -- 8.R Review Exercises for Chapter 8 -- 9 -- Applications of Integration -- 9.1 Volumes by the Slice Method -- 9.2 Volumes by the Shell Method -- 9.3 Average Values and the Mean Value Theorem for Integrals -- 9.4 Center of Mass -- 9.5 Energy, Power, and Work -- 9.R Review Exercises for Chpater 9 -- Comprehensive Test for Chapters 7 โ{128}{147} 9 -- 10 -- Further Techniques and Applications of Integration -- 10.1 Trigonometric Integrals -- 10.2 Partial Fractions -- 10.3 Arc Length and Surface Area -- 10.4 Parametric Curves -- 10.5 Length and Area in Polar Coordinates -- 10.R Review Exercises for Chapter 10 -- 11 -- Limits, L'Hรดpital's Rule, and Numerical Methods -- 11.1 Limits of Functions -- 11.2 L'Hรดpital's Rule -- 11.3 Improper Integrals -- 11.4 Limits of Sequences and Newton's Method -- 11.5 Numerical Integration -- 11.R Review Exercises for Chapter 11 -- 12 -- Infinite Series -- 12.1 The Sum of an Infinite Series -- 12.2 The Comparison Test and Alternating Series -- 12.3 The Integral and Ratio Tests -- 12.4 Power Series -- 12.5 Taylor's Formula -- 12.6 Complex Numbers -- 12.7 Second-Order Linear Differential Equations -- 12.8 Series Solutions of Differential Equations -- 12.R Review Exercises for Chapter 12 -- Comprehensive Test for Chapters 7 โ{128}{147} 12

Mathematics Functions of real variables Mathematics Real Functions


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram