Author | Mittelhammer, Ron C. author |
---|---|
Title | Mathematical Statistics for Economics and Business [electronic resource] / by Ron C. Mittelhammer |
Imprint | New York, NY : Springer New York, 1996 |
Connect to | http://dx.doi.org/10.1007/978-1-4612-3988-8 |
Descript | XVIII, 724 p. online resource |
1. Elements of Probability Theory -- 1.1. Introduction -- 1.2. Experiment, Sample Space, Outcome, and Event -- 1.3. Nonaxiomatic Probability Definitions -- 1.4. Axiomatic Definition of Probability -- 1.5. Some Probability Theorems -- 1.6. A Digression on Events -- 1.7. Conditional Probability -- 1.8. Independence -- 1.9. Bayesโs Rule -- Key Words, Phrases, and Symbols -- Problems -- 2. Random Variables, Densities, and Cumulative Distribution Functions -- 2.1. Introduction -- 2.2. Univariate Random Variables and Density Functions -- 2.3. Univariate Cumulative Distribution Functions -- 2.4. Multivariate Random Variables, PDFs, and CDFs -- 2.5. Marginal Probability Density Functions and CDFs -- 2.6. Conditional Density Functions -- 2.7. Independence of Random Variables -- 2.8. Extended Example of Multivariate Concepts in the Continuous Case -- 2.9. Events Occurring with Probability Zero -- Key Words, Phrases, and Symbols -- Problems -- 3. Mathematical Expectation and Moments -- 3.1. Expectation of a Random Variable -- 3.2. Expectation of a Function of Random Variables -- 3.3. Conditional Expectation -- 3.4. Moments of a Random Variable -- 3.5. Moment- and Cumulant-Generating Functions -- 3.6. Joint Moments, Covariance, and Correlation -- 3.7. Means and Variances of Linear Combinations of Random Variables -- 3.8. Necessary and Sufficient Conditions for Positive Semidefiniteness -- Key Words, Phrases, and Symbols -- Problems -- 4. Parametric Families of Density Functions -- 4.1. Parametric Families of Discrete Density Functions -- 4.2. Parametric Families of Continuous Density Functions -- 4.3. The Normal Family of Densities -- 4.4. The Exponential Class of Densities -- Key Words, Phrases, and Symbols -- Problems -- 5. Basic Asymptotics -- 5.1. Introduction -- 5.2. Elements of Real Analysis -- 5.3. Types of Random-Variable Convergence -- 5.4. Laws of Large Numbers -- 5.5. Central Limit Theorems -- 5.6. Asymptotic Distributions of Differentiable Functions of Asymptotically Normally Distributed Random Variables -- Key Words, Phrases, and Symbols -- Problems -- 6. Sampling, Sample Moments, Sampling Distributions, and Simulation -- 6.1. Introduction -- 6.2. Random Sampling -- 6.3. Empirical or Sample Distribution Function -- 6.4. Sample Moments and Sample Correlation -- 6.5. Properties of X-n and S2n When Random Sampling from a Normal Distribution? -- 6.6. Sampling Distributions: Deriving Probability Densities of Functions of Random Variables -- 6.7. t-and F-Densities -- 6.8. Random Sample Simulation and the Probability Integral Transformation -- 6.9. Order Statistics -- Key Words, Phrases, and Symbols -- Problems -- 7. Elements of Point Estimation Theory -- 7.1. Introduction -- 7.2. Statistical Models -- 7.3. Estimators and Estimator Properties -- 7.4. Sufficient Statistics -- 7.5. Results on MVUE Estimation -- Key Words, Phrases, and Symbols -- Problems -- 8. Point Estimation Methods -- 8.1. Introduction -- 8.2. Least Squares and the General Linear Model -- 8.3. The Method of Maximum Likelihood -- 8.4. The Method of Moments -- Key Words, Phrases, and Symbols -- Problems -- 9. Elements of Hypothesis-Testing Theory -- 9.1. Introduction -- 9.2. Statistical Hypotheses -- 9.3. Basic Hypothesis-Testing Concepts -- 9.4. Parametric Hypothesis Tests and Test Properties -- 9.5. Results on UMP Tests -- 9.6. Noncentral t-Distribution -- Key Words, Phrases, and Symbols -- Problems -- 10. Hypothesis-Testing Methods -- 10.1. Introduction -- 10.2. Heuristic Approach -- 10.3. Generalized Likelihood Ratio Tests -- 10.4. Lagrange Multiplier Tests -- 10.5. Wald Tests -- 10.6. Tests in the GLM -- 10.7. Confidence Intervals and Regions -- 10.8. Nonparametric Tests of Distributional Assumptions -- 10.9. Noncentral ?2 - and P-Distributions -- Key Words, Phrases, and Symbols -- Problems -- Appendix A. Math Review: Sets, Functions, Permutations, Combinations, and Notation -- A.1. Introduction -- A.2. Definitions, Axioms, Theorems, Corollaries, and Lemmas -- A.3. Elements of Set Theory -- Set-Defining Methods -- Set Classifications -- Special Sets, Set Operations, and Set Relationships -- Rules Governing Set Operations -- A.4. Relations, Point Functions, and Set Functions -- Cartesian Product -- Relation (Binary) -- Function -- Real-Valued Point Versus Set Functions -- A.5. Combinations and Permutations -- A.6. Summation, Integration and Matrix Differentiation Notation -- Key Words, Phrases, and Symbols -- Problems -- Appendix B. Useful Tables -- B.1. Cumulative Normal Distribution -- B.2. Studentโs t Distribution -- B.3. Chi-square Distribution -- B.4. F-Distribution: 5% Points -- B.5. F-Distribution: 1% Points