Author | Constantin, P. author |
---|---|
Title | Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations [electronic resource] / by P. Constantin, C. Foias, B. Nicolaenko, R. Teman |
Imprint | New York, NY : Springer New York, 1989 |
Connect to | http://dx.doi.org/10.1007/978-1-4612-3506-4 |
Descript | X, 123 p. online resource |
Preface -- Acknowledgments -- 1 Presentation of the Approach and of the Main Results -- 2 The Transport of Finite-Dimensional Contact Elements -- 3 Spectral Blocking Property -- 4 Strong Squeezing Property -- 5 Cone Invariance Properties -- 6 Consequences Regarding the Global Attractor -- 7 Local Exponential Decay Toward Blocked Integral Surfaces -- 8 Exponential Decay of Volume Elements and the Dimension of the Global Attractor -- 9 Choice of the Initial Manifold -- 10 Construction of the Inertial Manifold -- 11 Lower Bound for the Exponential Rate of Convergence to the Attractor -- 12 Asymptotic Completeness: Preparation -- 13 Asymptotic Completeness: Proof of Theorem 12.1 -- 14 Stability with Respect to Perturbations -- 15 Application: The KuramotoโSivashinsky Equation -- 16 Application: A Nonlocal Burgers Equation -- 17 Application: The CahnโHilliard Equation -- 18 Application: A Parabolic Equation in Two Space Variables -- 19 Application: The ChaffeeโInfante ReactionโDiffusion Equation -- References