Home / Help

Author Yosida, K. author Operational Calculus [electronic resource] : A Theory of Hyperfunctions / by K. Yosida New York, NY : Springer New York : Imprint: Springer, 1984 http://dx.doi.org/10.1007/978-1-4612-1118-1 X, 170 p. online resource

SUMMARY

In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the validยญ ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions conยญ cerning the growth behavior of the numerical function f(t) as t ̃ ̃. At about the midcentury, Jan Mikusinski invented the theory of conยญ volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,̃) such that the convolution f̃ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equaยญ tions with constant coefficients

CONTENT

I. Integration Operator h and Differentiation Operator s (Classes of Hyperfunctions: C and CH) -- I. Introduction of the Operator h Through the Convolution Ring C -- II. Introduction of the Operator s Through the Ring CH -- III. Linear Ordinary Differential Equations with Constant Coefficients -- IV. Fractional Powers of Hyperfunctions h, s and $$\frac{I}{{S - \alpha }}$$ -- V. Hyperfunctions Represented by Infinite Power Series in h -- II. Linear Ordinary Differential Equations with Linear Coefficients (The Class C/C of Hyperfunctions) -- VI. The Titchmarsh Convolution Theorem and the Class C/C -- VII. The Algebraic Derivative Applied to Laplaceโ{128}{153}s Differential Equation -- III. Shift Operator exp(??s) and Diffusion Operator exp(??s1/2) -- VIII. Exponential Hyperfunctions exp(??s) and exp(??s1/2) -- IV. Applications to Partial Differential Equations -- IX. One DimensionaL Wave Equation -- X. Telegraph Equation -- X. (cont.) -- XI. Heat Equation -- Answers to Exercises -- Formulas and Tables -- References -- Propositions and Theorems in Sections

Mathematics Mathematical analysis Analysis (Mathematics) Mathematics Analysis Mathematics general

Location Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907 