Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

TitleThe Fourier Transform in Biomedical Engineering [electronic resource] / edited by Terry M. Peters, Jackie Williams
ImprintBoston, MA : Birkhรคuser Boston : Imprint: Birkhรคuser, 1998
Connect tohttp://dx.doi.org/10.1007/978-1-4612-0637-8
Descript XIX, 199 p. online resource

SUMMARY

In 1994, in my role as Technical Program Chair for the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, I solicited proposals for mini-symposia to provide delegates with accessible summaries of important issues in research areas outside their particular specializations. Terry Peters and his colleagues submitted a proposal for a symposium on Fourier Transยญ forms and Biomedical Engineering whose goal was "to demystify the Fourier transform and describe its practical application in biomediยญ cal situations". This was to be achieved by presenting the concepts in straightforward, physical terms with examples drawn for the partiยญ cipants work in physiological signal analysis and medical imaging. The mini-symposia proved to be a great success and drew a large and appreciative audience. The only complaint being that the time allocated, 90 minutes, was not adequate to allow the participants to elaborate their ideas adequately. I understand that this feedback helped the authors to develop this book


CONTENT

1 Introduction to the Fourier Transform -- 1.1 Introduction -- 1.2 Basic Functions -- 1.3 Sines, Cosines and Composite waves -- 1.4 Orthogonality -- 1.5 Waves in time and space -- 1.6 Complex numbers. A Mathematical Tool -- 1.7 The Fourier transform -- 1.8 Fourier transforms in the physical world: The Lens as an FT computer -- 1.9 Blurring and convolution -- 1.10 The โ{128}{156}Pointโ{128}{157} or โ{128}{156}Impulseโ{128}{157} response function. -- 1.11 Band-limited functions -- 1.12 Summary -- 1.13 Bibliography -- 2 The 1-D Fourier Transform -- 2.1 Introduction -- 2.2 Re-visiting the Fourier transform -- 2.3 The Sampling Theorem -- 2.4 Aliasing -- 2.5 Convolution -- 2.6 Digital Filtering -- 2.7 The Power Spectrum -- 2.8 Deconvolution -- 2.9 System Identification -- 2.10 Summary -- 2.11 Bibliography -- 3 The 2-D Fourier Transform -- 3.1 Introduction -- 3.2 Linear space-invariant systems in two dimensions -- 3.3 Ideal systems -- 3.4 A simple X-ray imaging system -- 3.5 Modulation Transfer Function (MTF) -- 3.6 Image processing -- 3.7 Tomography -- 3.8 Computed Tomography -- 3.9 Summary -- 3.10 Bibliography -- 4 The Fourier Transform in Magnetic Resonance Imaging -- 4.1 Introduction -- 4.2 The 2-D Fourier transform -- 4.3 Magnetic Resonance Imaging -- 4.4 MRI -- 4.5 Magnetic Resonance Spectroscopic Imaging -- 4.6 Motion in MRI -- 4.7 Conclusion -- 4.8 Bibliography -- 5 The Wavelet Transform -- 5.1 Introduction -- 5.2 Time-Frequency analysis -- 5.3 Multiresolution Analysis -- 5.4 Applications -- 5.5 Summary -- 5.6 Bibliography -- 6 The Discrete Fourier Transform and Fast Fourier Transform -- 6.1 Introduction -- 6.2 From Continuous to Discrete -- 6.3 The Discrete Fourier Transform -- 6.4 The Fast Fourier Transform -- 6.5 Caveats to using the DFT/FFT -- 6.6 Conclusion -- 6.7 Bibliography


Mathematics Fourier analysis Biomathematics Mathematics Mathematical and Computational Biology Fourier Analysis Biomedicine general



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram