Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorMarasco, Addolorata. author
TitleScientific Computing with Mathematicaยฎ [electronic resource] : Mathematical Problems for Ordinary Differential Equations / by Addolorata Marasco, Antonio Romano
ImprintBoston, MA : Birkhรคuser Boston : Imprint: Birkhรคuser, 2001
Connect tohttp://dx.doi.org/10.1007/978-1-4612-0151-9
Descript XIV, 270 p. online resource

SUMMARY

Many interesting behaviors of real physical, biological, economical, and chemical systems can be described by ordinary differential equations (ODEs). Scientific Computing with Mathematica for Ordinary Differential Equations provides a general framework useful for the applications, on the conceptual aspects of the theory of ODEs, as well as a sophisticated use of Mathematica software for the solutions of problems related to ODEs. In particular, a chapter is devoted to the use ODEs and Mathematica in the Dynamics of rigid bodies. Mathematical methods and scientific computation are dealt with jointly to supply a unified presentation. The main problems of ordinary differential equations such as, phase portrait, approximate solutions, periodic orbits, stability, bifurcation, and boundary problems are covered in an integrated fashion with numerous worked examples and computer program demonstrations using Mathematica. Topics and Features:*Explains how to use the Mathematica package ODE.m to support qualitative and quantitative problem solving *End-of- chapter exercise sets incorporating the use of Mathematica programs *Detailed description and explanation of the mathematical procedures underlying the programs written in Mathematica *Appendix describing the use of ten notebooks to guide the reader through all the exercises. This book is an essential text/reference for students, graduates and practitioners in applied mathematics and engineering interested in ODE's problems in both the qualitative and quantitative description of solutions with the Mathematica program. It is also suitable as a self-


CONTENT

1 Solutions of ODEs and Their Properties -- 1.1 Introduction -- 1.2 Definitions and Existence Theory -- 1.3 Functions DSolve, NDSolve, and Differentiallnvariants -- 1.4 The Phase Portrait -- 1.5 Applications of the Programs Sysn, Phase2D, PolarPhase, and Phase3D -- 1.6 Problems -- 2 Linear ODEs with Constant Coefficients -- 2.1 Introduction -- 2.2 The General Solution of Linear Differential Systems with Constant Coefficients -- 2.3 The Program LinSys -- 2.4 Problems -- 3 Power Series Solutions of ODEs and Frobenius Series -- 3.1 Introduction -- 3.2 Power Series and the Program Taylor -- 3.3 Power Series and Solutions of ODEs -- 3.4 Series Solutions Near Regular Singular Points: Method of Frobenius -- 3.5 The Program SerSol -- 3.6 Other Applications of SerSol -- 3.7 The Program Frobenius -- 3.8 Problems -- 4 Poincarรฉโ{128}{153}s Perturbation Method -- 4.1 Introduction -- 4.2 Poincarรฉโ{128}{153}s Perturbation Method -- 4.3 How to Introduce the Small Parameter -- 4.4 The Program Poincare -- 4.5 Problems -- 5 Problems of Stability -- 5.1 Introduction -- 5.2 Definitions of Stability -- 5.3 Analysis of Stability: The Direct Method -- 5.4 Polynomial Liapunov Functions -- 5.5 The Program Liapunov -- 5.6 Analysis of Stability, the Indirect Method: The Planar Case -- 5.7 The Program LStability -- 5.8 Problems -- 6 Stability: The Critical Case -- 6.1 Introduction -- 6.2 The Planar Case and Poincarรฉโ{128}{153}s Method -- 6.3 The Programs CriticalEqS and CriticalEqN -- 6.4 The Center Manifold -- 6.5 The Program CManifold -- 6.6 Problems -- 7 Bifurcation in ODEs -- 7.1 Introduction to Bifurcation -- 7.2 Bifurcation in a Differential Equation Containing One Parameter -- 7.3 The Programs Bifl and Bif1G -- 7.4 Problems -- 7.5 Bifurcation in a Differential Equation Depending on Two Parameters -- 7.6 The Programs Bif2 and Bif2G -- 7.7 Problems -- 7.8 Hopfโ{128}{153}s Bifurcation -- 7.9 The Program HopfBif -- 7.10 Problems -- 8 The Lindstedt-Poincarรฉ Method -- 8.1 Asymptotic Expansions -- 8.2 The Lindstedt-Poincarรฉ Method -- 8.3 The Programs LindPoinc and GLindPoinc -- 8.4 Problems -- 9 Boundary-Value Problems for Second-Order ODEs -- 9.1 Boundary-Value Problems and Bernsteinโ{128}{153}s Theorem -- 9.2 The Shooting Method -- 9.3 The Program NBoundary -- 9.4 The Finite Difference Method -- 9.5 The Programs NBoundaryl and NBoundary2 -- 9.6 Problems -- 10 Rigid Body with a Fixed Point -- 10.1 Introduction -- 10.2 Eulerโ{128}{153}s Equations -- 10.3 Free Rotations or Poinsotโ{128}{153}s Motions -- 10.4 Heavy Gyroscope -- 10.5 The Gyroscopic Effect -- 10.6 The Program Poinsot -- 10.7 The Program Solid -- 10.8 Problems -- A How to Use the Package ODE.m -- References


Mathematics Mathematical analysis Analysis (Mathematics) Differential equations Applied mathematics Engineering mathematics Computer mathematics Computer software Mathematical models Mathematics Mathematical Modeling and Industrial Mathematics Analysis Mathematical Software Ordinary Differential Equations Computational Science and Engineering Applications of Mathematics



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram