Author | Pan, Victor Y. author |
---|---|

Title | Structured Matrices and Polynomials [electronic resource] : Unified Superfast Algorithms / by Victor Y. Pan |

Imprint | Boston, MA : Birkhรคuser Boston : Imprint: Birkhรคuser, 2001 |

Connect to | http://dx.doi.org/10.1007/978-1-4612-0129-8 |

Descript | XXV, 278 p. online resource |

SUMMARY

Structured matrices serve as a natural bridge between the areas of algebraic computations with polynomials and numerical matrix computations, allowing cross-fertilization of both fields. This book covers most fundamental numerical and algebraic computations with Toeplitz, Hankel, Vandermonde, Cauchy, and other popular structured matrices. Throughout the computations, the matrices are represented by their compressed images, called displacements, enabling both a unified treatment of various matrix structures and dramatic saving of computer time and memory. The resulting superfast algorithms allow further dramatic parallel acceleration using FFT and fast sine and cosine transforms. Included are specific applications to other fields, in particular, superfast solutions to: various fundamental problems of computer algebra; the tangential Nevanlinna--Pick and matrix Nehari problems The primary intended readership for this work includes researchers, algorithm designers, and advanced graduate students in the fields of computations with structured matrices, computer algebra, and numerical rational interpolation. The book goes beyond research frontiers and, apart from very recent research articles, includes yet unpublished results. To serve a wider audience, the presentation unfolds systematically and is written in a user-friendly engaging style. Only some preliminary knowledge of the fundamentals of linear algebra is required. This makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. Examples, tables, figures, exercises, extensive bibliography, and index lend this text to classroom use or self-study

Mathematics
Computers
Computer science -- Mathematics
Algebra
Matrix theory
Computer mathematics
Mathematics
Algebra
Linear and Multilinear Algebras Matrix Theory
Theory of Computation
Mathematics of Computing
Computational Mathematics and Numerical Analysis