Author | Fuhrmann, Paul A. author |
---|---|
Title | A Polynomial Approach to Linear Algebra [electronic resource] / by Paul A. Fuhrmann |
Imprint | New York, NY : Springer New York : Imprint: Springer, 1996 |
Connect to | http://dx.doi.org/10.1007/978-1-4419-8734-1 |
Descript | XIII, 361 p. 1 illus. online resource |
1 Preliminaries -- 1.1 Maps -- 1.2 Groups -- 1.3 Rings and Fields -- 1.4 Modules -- 1.5 Exercises -- 1.6 Notes and Remarks -- 2 Linear Spaces -- 2.1 Linear Spaces -- 2.2 Linear Combinations -- 2.3 Subspaces -- 2.4 Linear Dependence and Independence -- 2.5 Subspaces and Bases -- 2.6 Direct Sums -- 2.7 Quotient Spaces -- 2.8 Coordinates -- 2.9 Change of Basis Transformations -- 2.10 Lagrange Interpolation -- 2.11 Taylor Expansion -- 2.12 Exercises -- 2.13 Notes and Remarks -- 3 Determinants -- 3.1 Basic Properties -- 3.2 Cramerโs Rule -- 3.3 The Sylvester Resultant -- 3.4 Exercises -- 3.5 Notes and Remarks -- 4 Linear Transformations -- 4.1 Linear Transformations -- 4.2 Matrix Representations -- 4.3 Linear Punctionals and Duality -- 4.4 The Adjoint Transformation -- 4.5 Polynomial Module Structure on Vector Spaces -- 4.6 Exercises -- 4.7 Notes and Remarks -- 5 The Shift Operator -- 5.1 Basic Properties -- 5.2 Circulant Matrices -- 5.3 Rational Models -- 5.4 The Chinese Remainder Theorem -- 5.5 Hermite Interpolation -- 5.6 Duality -- 5.7 Reproducing Kernels -- 5.8 Exercises -- 5.9 Notes and Remarks -- 6 Structure Theory of Linear Transformations -- 6.1 Cyclic Transformations -- 6.2 The Invariant Factor Algorithm -- 6.3 Noncychc Transformations -- 6.4 Diagonalization -- 6.5 Exercises -- 6.6 Notes and Remarks -- 7 Inner Product Spaces -- 7.1 Geometry of Inner Product Spaces -- 7.2 Operators in Inner Product Spaces -- 7.3 Unitary Operators -- 7.4 Self-Adjoint Operators -- 7.5 Singular Vectors and Singular Values -- 7.6 Unitary Embeddings -- 7.7 Exercises -- 7.8 Notes and Remarks -- 8 Quadratic Forms -- 8.1 Preliminaries -- 8.2 Sylvesterโs Law of Inertia -- 8.3 Hankel Operators and Forms -- 8.4 Bezoutians -- 8.5 Representation of Bezoutians -- 8.6 Diagonalization of Bezoutians -- 8.7 Bezout and Hankel Matrices -- 8.8 Inversion of Hankel Matrices -- 8.9 Continued Fractions and Orthogonal Polynomials -- 8.10 The Cauchy Index -- 8.11 Exercises -- 8.12 Notes and Remarks -- 9 Stability -- 9.1 Root Location Using Quadratic Forms -- 9.2 Exercises -- 9.3 Notes and Remarks -- 10 Elements of System Theory -- 10.1 Introduction -- 10.2 Systems and Their Representations -- 10.3 Realization Theory -- 10.4 Stabilization -- 10.5 The Youla-Kucera Parametrization -- 10.6 Exercises -- 10.7 Notes and Remarks -- 11 Hankel Norm Approximation -- 11.1 Introduction -- 11.2 Preliminaries -- 11.3 Schmidt Pairs of Hankel Operators -- 11.4 Duality and Hankel Norm Approximation -- 11.5 Nevanhnna-Pick Interpolation -- 11.6 Hankel Approximant Singular Values -- 11.7 Exercises -- 11.8 Notes and Remarks -- Reference