Author | Childs, Lindsay N. author |
---|---|
Title | A Concrete Introduction to Higher Algebra [electronic resource] / by Lindsay N. Childs |
Imprint | New York, NY : Springer New York : Imprint: Springer, 1995 |
Edition | Second Edition |
Connect to | http://dx.doi.org/10.1007/978-1-4419-8702-0 |
Descript | XV, 522 p. online resource |
1 Numbers -- 2 Induction -- A. Induction -- B. Another Form of Induction -- C. Well-Ordering -- D. Division Theorem -- E. Bases -- F. Operations in Base a -- 3 Euclidโs Algorithm -- A. Greatest Common Divisors -- B. Euclidโs Algorithm -- C. Bezoutโs Identity -- D. The Efficiency of Euclidโs Algorithm -- E. Euclidโs Algorithm and Incommensurability -- 4 Unique Factorization -- A. The Fundamental Theorem of Arithmetic -- B. Exponential Notation -- C. Primes -- D. Primes in an Interval -- 5 Congruences -- A. Congruence Modulo m -- B. Basic Properties -- C. Divisibility Tricks -- D. More Properties of Congruence -- E. Linear Congruences and Bezoutโs Identity -- 6 Congruence Classes -- A. Congruence Classes (mod m): Examples -- B. Congruence Classes and ?/m? -- C. Arithmetic Modulo m -- D. Complete Sets of Representatives -- E. Units -- 7 Applications of Congruences -- A. Round Robin Tournaments -- B. Pseudorandom Numbers -- C. Factoring Large Numbers by Trial Division -- D. Sieves -- E. Factoring by the Pollard Rho Method -- F. Knapsack Cryptosystems -- 8 Rings and Fields -- A. Axioms -- B. ?/m? -- C. Homomorphisms -- 9 Fermatโs and Eulerโs Theorems -- A. Orders of Elements -- B. Fermatโs Theorem -- C. Eulerโs Theorem -- D. Finding High Powers Modulo m -- E. Groups of Units and Eulerโs Theorem -- F. The Exponent of an Abelian Group -- 10 Applications of Fermatโs and Eulerโs Theorems -- A. Fractions in Base a -- B. RSA Codes -- C. 2-Pseudoprimes -- D. Trial a-Pseudoprime Testing -- E. The Pollard p โ 1 Algorithm -- 11 On Groups -- A. Subgroups -- B. Lagrangeโs Theorem -- C. A Probabilistic Primality Test -- D. Homomorphisms -- E. Some Nonabelian Groups -- 12 The Chinese Remainder Theorem -- A. The Theorem -- B. Products of Rings and Eulerโs ?-Function -- C. Square Roots of 1 Modulo m -- 13 Matrices and Codes -- A. Matrix Multiplication -- B. Linear Equations -- C. Determinants and Inverses -- D. Mn(R) -- E. Error-Correcting Codes, I -- F. Hill Codes -- 14 Polynomials -- 15 Unique Factorization -- A. Division Theorem -- B. Primitive Roots -- C. Greatest Common Divisors -- D. Factorization into Irreducible Polynomials -- 16 The Fundamental Theorem of Algebra -- A. Rational Functions -- B. Partial Fractions -- C Irreducible Polynomials over ? -- D. The Complex Numbers -- E. Root Formulas -- F. The Fundamental Theorem -- G. Integrating -- 17 Derivatives -- A. The Derivative of a Polynomial -- B. Sturmโs Algorithm -- 18 Factoring in ?[x], I -- A. Gaussโs Lemma -- B. Finding Roots -- C. Testing for Irreducibility -- 19 The Binomial Theorem in Characteristic p -- A. The Binomial Theorem -- B. Fermatโs Theorem Revisited -- C. Multiple Roots -- 20 Congruences and the Chinese Remainder Theorem -- A. Congruences Modulo a Polynomial -- B. The Chinese Remainder Theorem -- 21 Applications of the Chinese Remainder Theorem -- A. The Method of Lagrange Interpolation -- B. Fast Polynomial Multiplication -- 22 Factoring in Fp[x] and in ?[x] -- A. Berlekampโs Algorithm -- B. Factoring in ?[x] by Factoring mod M -- C. Bounding the Coefficients of Factors of a Polynomial -- D. Factoring Modulo High Powers of Primes -- 23 Primitive Roots -- A. Primitive Roots Modulo m -- B. Polynomials Which Factor Modulo Every Prime -- 24 Cyclic Groups and Primitive Roots -- A. Cyclic Groups -- B. Primitive Roots Modulo pe -- 25 Pseudoprimes -- A. Lots of Carmichael Numbers -- B. Strong a-Pseudoprimes -- C. Rabinโs Theorem -- 26 Roots of Unity in ?/m? -- A. For Which a Is m an a-Pseudoprime? -- B. Square Roots of ?1 in ?/p? -- C. Roots of ?1 in ?/m? -- D. False Witnesses -- E. Proof of Rabinโs Theorem -- F. RSA Codes and Carmichael Numbers -- 27 Quadratic Residues -- A. Reduction to the Odd Prime Case -- B. The Legendre Symbol -- C. Proof of Quadratic Reciprocity -- D. Applications of Quadratic Reciprocity -- 28 Congruence Classes Modulo a Polynomial -- A. The Ring F[x]/m(x) -- B. Representing Congruence Classes mod m(x) -- C. Orders of Elements -- D. Inventing Roots of Polynomials -- E. Finding Polynomials with Given Roots -- 29 Some Applications of Finite Fields -- A. Latin Squares -- B. Error Correcting Codes -- C. Reed-Solomon Codes -- 30 Classifying Finite Fields -- A. More Homomorphisms -- B. On Berlekampโs Algorithm -- C. Finite Fields Are Simple -- D. Factoring xpn โ x in Fp[x] -- E. Counting Irreducible Polynomials -- F. Finite Fields -- G. Most Polynomials in Z[x] Are Irreducible -- Hints to Selected Exercises -- References