Author | Mines, Ray. author |
---|---|
Title | A Course in Constructive Algebra [electronic resource] / by Ray Mines, Fred Richman, Wim Ruitenburg |
Imprint | New York, NY : Springer New York : Imprint: Springer, 1988 |
Connect to | http://dx.doi.org/10.1007/978-1-4419-8640-5 |
Descript | XI, 344 p. online resource |
I. Sets -- 1. Constructive vs. classical mathematics -- 2. Sets, subsets and functions -- 3. Choice -- 4. Categories -- 5. Partially ordered sets and lattices -- 6. Well-founded sets and ordinals -- II. Basic Algebra -- 1. Groups -- 2. Rings and fields -- 3. Real numbers -- 4. Modules -- 5. Polynomial rings -- 6. Matrices and vector spaces -- 7. Determinants -- 8. Symmetric polynomials -- III. Rings And Modules -- 1. Quasi-regular ideals -- 2. Coherent and Noetherian modules -- 3. Localization -- 4. Tensor products -- 5. Flat modules -- 6. Local rings -- 7. Commutative local rings -- IV. Divisibility in Discrete Domains -- 1. Cancellation monoids -- 2. UFD's and Bรฉzout domains -- 3. Dedekind-Hasse rings and Euclidean domains -- 4. Polynomial rings -- V. Principal Ideal Domains -- 1. Diagonalizing matrices -- 2. Finitely presented modules -- 3. Torsion modules, p-components, elementary divisors -- 4. Linear transformations -- VI. Field Theory -- 1. Integral extensions and impotent rings -- 2. Algebraic independence and transcendence bases -- 3. Splitting fields and algebraic closures -- 4. Separability and diagonalizability -- 5. Primitive elements -- 6. Separability and characteristic p -- 7. Perfect fields -- 8. Galois theory -- VII. Factoring Polynomials -- 1. Factorial and separably factorial fields -- 2. Extensions of (separably) factorial fields -- 3. Condition p -- 4. The fundamental theorem of algebra -- VIII. Commutative Noetherian Rings -- 1. The Hilbert basis theorem -- 2. Noether normalization and the Artin-Rees lemma -- 3. The Nullstellensatz -- 4. Tennenbaum' s approach to the Hilbert basis theorem -- 5. Primary ideals -- 6. Localization -- 7. Primary decomposition -- 8. Lasker-Noether rings -- 9. Fully Lasker-Noether rings -- 10. The principal ideal theorem -- IX. Finite Dimensional Algebras -- 1. Representations -- 2. The density theorem -- 3. The radical and summands -- 4. Wedderburn's theorem, part one -- 5. Matrix rings and division algebras -- X. Free Groups -- 1. Existence and uniqueness -- 2. Nielsen sets -- 3. Finitely generated subgroups -- 4. Detachable subgroups of finite-rank free groups -- 5. Conjugate subgroups -- XI. Abelian Groups -- 1. Finite-rank torsion-free groups -- 2. Divisible groups -- 3. Height functions on p-groups -- 4. Ulm's theorem -- 5. Construction of Ulm groups -- XII. Valuation Theory -- 1. Valuations -- 2. Locally precompact valuations -- 3. Pseudofactorial fields -- 4. Normed vector spaces -- 5. Real and complex fields -- 6. Hensel's lemma -- 7. Extensions of valuations -- 8. e and f -- XIII. Dedekind Domains -- 1. Dedekind sets of valuations -- 2. Ideal theory -- 3. Finite extensions