Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorBump, D. author
TitleAn Introduction to the Langlands Program [electronic resource] / by D. Bump, J. W. Cogdell, E. de Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla ; edited by Joseph Bernstein, Stephen Gelbart
ImprintBoston, MA : Birkhรคuser Boston : Imprint: Birkhรคuser, 2004
Connect to
Descript IX, 281 p. online resource


For the past several decades the theory of automorphic forms has become a major focal point of development in number theory and algebraic geometry, with applications in many diverse areas, including combinatorics and mathematical physics. The twelve chapters of this monograph present a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Key features of this self-contained presentation: A variety of areas in number theory from the classical zeta function up to the Langlands program are covered. The exposition is systematic, with each chapter focusing on a particular topic devoted to special cases of the program: โ{128}ข Basic zeta function of Riemann and its generalizations to Dirichlet and Hecke L-functions, class field theory and some topics on classical automorphic functions (E. Kowalski) โ{128}ข A study of the conjectures of Artin and Shimura-Taniyama-Weil (E. de Shalit) โ{128}ข An examination of classical modular (automorphic) L-functions as GL(2) functions, bringing into play the theory of representations (S.S. Kudla) โ{128}ข Selberg's theory of the trace formula, which is a way to study automorphic representations (D. Bump) โ{128}ข Discussion of cuspidal automorphic representations of GL(2,(A)) leads to Langlands theory for GL(n) and the importance of the Langlands dual group (J.W. Cogdell) โ{128}ข An introduction to the geometric Langlands program, a new and active area of research that permits using powerful methods of algebraic geometry to construct automorphic sheaves (D. Gaitsgory) Graduate students and researchers will benefit from this beautiful text


Preface -- E. Kowalski - Elementary Theory of L-Functions I -- E. Kowalski - Elementary Theory of L-Functions II -- E. Kowalski - Classical Automorphic Forms -- E. DeShalit - Artin L-Functions -- E. DeShalit - L-Functions of Elliptic Curves and Modular Forms -- S. Kudla - Tate's Thesis -- S. Kudla - From Modular Forms to Automorphic Representations -- D. Bump - Spectral Theory and the Trace Formula -- J. Cogdell - Analytic Theory of L-Functions for GLn -- J. Cogdell - Langlands Conjectures for GLn -- J. Cogdell - Dual Groups and Langlands Functoriality -- D. Gaitsgory - Informal Introduction to Geometric Langlands

Mathematics Algebraic geometry Topological groups Lie groups Number theory Mathematics Number Theory Algebraic Geometry Topological Groups Lie Groups


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram