Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorHastie, Trevor. author
TitleThe Elements of Statistical Learning [electronic resource] : Data Mining, Inference, and Prediction / by Trevor Hastie, Jerome Friedman, Robert Tibshirani
ImprintNew York, NY : Springer New York : Imprint: Springer, 2001
Connect tohttp://dx.doi.org/10.1007/978-0-387-21606-5
Descript XVI, 536 p. online resource

SUMMARY

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ̀ẁide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting


CONTENT

1 Introduction -- 2 Overview of Supervised Learning -- 3 Linear Methods for Regression -- 4 Linear Methods for Classification -- 5 Basis Expansions and Regularization -- 6 Kernel Methods -- 7 Model Assessment and Selection -- 8 Model Inference and Averaging -- 9 Additive Models, Trees, and Related Methods -- 10 Boosting and Additive Trees -- 11 Neural Networks -- 12 Support Vector Machines and Flexible Discriminants -- 13 Prototype Methods and Nearest-Neighbors -- 14 Unsupervised Learning -- References -- Author Index


Statistics Mathematical statistics Database management Artificial intelligence Bioinformatics Computational biology Statistics Statistical Theory and Methods Statistics for Engineering Physics Computer Science Chemistry and Earth Sciences Probability and Statistics in Computer Science Computer Appl. in Life Sciences Database Management Artificial Intelligence (incl. Robotics)



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram