Author | Tritton, D. J. author |
---|---|
Title | Physical Fluid Dynamics [electronic resource] / by D. J. Tritton |
Imprint | Dordrecht : Springer Netherlands, 1977 |
Connect to | http://dx.doi.org/10.1007/978-94-009-9992-3 |
Descript | XVI, 362 p. 66 illus. online resource |
1. Introduction -- 1.1 Preamble -- 1.2 Scope of book -- 1.3 Notation and definitions -- 2. Pipe and Channel Flow -- 2.1 Introduction -- 2.2 Laminar flow theory: channel -- 2.3 Laminar flow theory: pipe -- 2.4 The Reynolds number -- 2.5 The entry length -- 2.6 Transition to turbulent flow -- 2.7 Relationship between flow rate and pressure gradient -- 3. Flow Past a Circular Cylinder -- 3.1 Introduction -- 3.2 The Reynolds number -- 3.3 Flow patterns -- 3.4 Drag -- 4. Convection in Horizontal Layers -- 4.1 The configuration -- 4.2 Onset of motion -- 4.3 Flow regimes -- 5. Equations of Motion -- 5.1 Introduction -- 5.2 Fluid particles and continuum mechanics -- 5.3 Eulerian and Langrangian co-ordinates -- 5.4 Continuity equation -- 5.5 The substantive derivative -- 5.6 The NavierโStokes equation -- 5.7 Boundary conditions -- 5.8 Condition for incompressibility -- Appendix: Derivation of viscous term of dynamical equation -- 6. Further Basic Ideas -- 6.1 Streamlines, streamtubes, particle paths and streaklines -- 6.2 Computations for flow past a circular cylinder -- 6.3 The stream function -- 6.4 Vorticity -- 6.5 Vorticity equation -- 6.6 Circulation -- 7. Dynamical Similarity -- 7.1 Introduction -- 7.2 Condition for dynamical similarity: Reynolds number -- 7.3 Dependent quantities -- 7.4 Other governing non-dimensional parameters -- 8. Low and High Reynolds Numbers -- 8.1 Physical significance of the Reynolds number -- 8.2 Low Reynolds number -- 8.3 High Reynolds number -- 9. Some Solutions of the Viscous Flow Equations -- 9.1 Introduction -- 9.2 Poiseuille flow -- 9.3 Rotating Couette flow -- 9.4 Stokes flow past a sphere -- 9.5 Low Reynolds number flow past a cylinder -- 10. Inviscid Flow -- 10.1 Introduction -- 10.2 Kelvin circulation theorem -- 10.3 Irrotational motion -- 10.4 Bernoulliโs equation -- 10.5 Drag in inviscid flow: dโAlembertโs โparadoxโ -- 10.6 Applications of Bernoulliโs equation -- 10.7 Some definitions -- 11. Boundary Layers and Related Topics -- 11.1 Boundary layer formation -- 11.2 The boundary layer approximation -- 11.3 Zero pressure gradient solution -- 11.4 Boundary layer separation -- 11.5 Drag on bluff bodies -- 11.6 Streamlining -- 11.7 Wakes -- 11.8 Jets -- 11.9 Momentum and energy in viscous flow -- 12. Lift -- 12.1 Introduction -- 12.2 Two-dimensional aerofoils -- 12.3 Three-dimensional aerofoils -- 12.4 Spinning bodies -- 13. Thermal Flows: Basic Equations and Concepts -- 13.1 Introduction -- 13.2 Equations of convection -- 13.3 Classification of convective flows -- 13.4 Forced convection -- 13.5 Flow with concentration variations (mass transfer) -- 14. Free Convection -- 14.1 Introduction -- 14.2 The governing non-dimensional parameters -- 14.3 The adiabatic temperature gradient -- 14.4 Free convection as a heat engine -- 14.5 Convection from a heated vertical surface -- 14.6 Thermal plumes -- 14.7 Convection in fluid layers -- Appendix: The Boussinesq approximation in free convection -- 15. Flow in Rotating Fluids -- 15.1 Introduction -- 15.2 Centrifugal and Coriolis forces -- 15.3 Geostrophic flow and the TaylorโProud man theorem -- 15.4 Taylor columns -- 15.5 Ekman layers -- 15.6 Intrinsic stability and inertial waves -- 15.7 Rossby waves -- 15.8 Convection in a rotating annulus -- 16. Stratified Flow -- 16.1 Basic concepts -- 16.2 Blocking -- 16.3 Lee waves -- 16.4 Internal waves -- 16.5 Stratification and rotation -- 17. Instability Phenomena -- 17.1 Introduction -- 17.2 Surface tension instability of a liquid column -- 17.3 Convection due to internal heat generation -- 17.4 Convection due to surface tension variations -- 17.5 Instability of rotating Couette flow -- 17.6 Shear flow instability -- 18. The Theory of Hydro Dynamic Stability -- 18.1 The nature of linear stability theory -- 18.2 Onset of Bรฉnard convection -- 18.3 Overstability -- 18.4 Rotating Couette flow -- 18.5 Boundary layer stability -- 19. Transition to Turbulence -- 19.1 Boundary layer transition -- 19.2 Transition in jets and other free shear flows -- 19.3 Pipe flow transition -- 20. Turbulence -- 20.1 The nature of turbulent motion -- 20.2 Introduction to the statistical description of turbulent motion -- 20.3 Formulation of the statistical description -- 20.4 Turbulence equations -- 20.5 Calculation methods -- 20.6 Interpretation of correlations -- 20.7 Spectra -- 20.8 The concept of eddies -- 21. Homogeneous Isotropic Turbulence -- 21.1 Introduction -- 21.2 Space correlations and the closure problem -- 21.3 Spectra and the energy cascade -- 21.4 Dynamical processes of the energy cascade -- 22. The Structure of Turbulent Flows -- 22.1 Introduction -- 22.2 Reynolds number similarity and self-preservation -- 22.3 Intermittency and entrainment -- 22.4 The structure of a turbulent wake -- 22.5 Turbulent motion near a wall -- 22.6 Large eddies in a boundary layer -- 22.7 The Coanda effect -- 22.8 Stratified shear flows -- 22.9 Reverse transition -- 23. Experimental Methods -- 23.1 General aspects of experimental fluid dynamics -- 23.2 Velocity measurement -- 23.3 Pressure and temperature measurement -- 23.4 Flow visualization -- 24. Practical Situations -- 24.1 Introduction -- 24.2 Cloud patterns -- 24.3 Waves in the atmospheric circulation -- 24.4 Continental drift and convection in the Earthโs mantle -- 24.5 Solar granulation -- 24.6 Effluent dispersal -- 24.7 Wind effects on structures -- 24.8 Boundary layer control: vortex generators -- 24.9 Fluidics -- 24.10 Undulatory swimming -- 24.11 Convection from the human body -- 24.12 The flight of a boomerang -- Notation -- Problems -- Bibliography and References