Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

Titleการจัดลำดับการผลิตที่มีหลายวัตถุประสงค์บนสายการประกอบผลิตภัณฑ์ผสมแบบสองด้าน ภายใต้ผลกระทบจากการเรียนรู้ / วันวิสา นฤมิตวงค์ = Multi-objective sequencing problem on mixed-model two-sided assembly lines under learning effect
Author Wanwisa Naruemitwong
Imprint 2555
Connect tohttp://cuir.car.chula.ac.th/handle/123456789/30929
Descript ก-ท, 317 แผ่น : ภาพประกอบ

SUMMARY

การจัดลำดับการผลิตมีความสำคัญอย่างยิ่งในการช่วยแก้ปัญหาสายการประกอบผลิตภัณฑ์ผสมแบบสองด้าน เพื่อให้การผลิตมีประสิทธิภาพสูงสุด ซึ่งปัญหาการจัดลำดับการผลิตนั้นต้องพิจารณาหลายปัจจัย ทั้งฟังก์ชันวัตถุประสงค์ที่มีหลายตัว และผลกระทบจากการเรียนรู้ จึงทำให้ปัญหามีความยุ่งยากซับซ้อนมากยิ่งขึ้น (ปัญหาแบบ NP-Hard) งานวิจัยนี้ได้นำอัลกอริทึมที่มีชื่อว่า วิธีการหาค่าเหมาะสมแบบการกระจายของสิ่งมีชีวิตตามภูมิศาสตร์ (Biogeography-based optimization: BBO) เข้ามาประยุกต์ใช้ในการแก้ปัญหาการจัดลำดับการผลิต โดยจะพิจารณาฟังก์ชันวัตถุประสงค์ 3 ฟังก์ชันวัตถุประสงค์คือ ความแปรผันของการผลิตน้อยที่สุด ปริมาณงานที่ทำไม่เสร็จน้อยที่สุด และเวลาการปรับตั้งเครื่องน้อยที่สุด แล้วเปรียบเทียบประสิทธิภาพกับอัลกอริทึมที่ได้รับการยอมรับว่า สามารถแก้ปัญหาประเภทนี้ได้อย่างมีประสิทธิภาพ ได้แก่ NSGA-II, DPSO และ PSONK จากการเปรียบเทียบประสิทธิภาพของผลการวิจัยพบว่า BBO กับ PSONK มีประสิทธิภาพใกล้เคียงกัน เพราะฉะนั้นจึงได้ประยุกต์อัลกอริทึม BBO adaptive ขึ้นมาเพื่อเปรียบเทียบประสิทธิภาพกับอัลกอริทึมอื่นๆ และสรุปได้ว่า BBO adaptive สามารถแก้ปัญหาได้อย่างมีประสิทธิภาพดีกว่า NSGAII, DPSO และ PSONK
Sequencing is an important method for solving the mixed model two-sided assembly lines problem to reach maximum production efficiency. Many factors such as multiple objectives and learning effect have to be considered in solving the sequencing problem. These make the problem more complicated as known as “NP-Hard problem”. In this research, a biogeography based optimization (BBO) algorithm is adopted for solving the sequencing problem to minimize variance of production rates, utility work and setup time. The results are compared with well-known algorithms such as non-dominated sorting genetic algorithm (NSGA-II), discrete particle swarm optimization (DPSO) and particle swarm optimization with negative knowledge (PSONK). The experiments show that BBO has performed effective results approximate to those performed by PSONK. Therefore, BBO adaptive has been applied for effectiveness comparison with the other algorithms. The result show that BBO adaptive is more effective in solving NP-hard problems than NSGAII, DPSO and PSONK algorithms.


การกำหนดงานการผลิต การจัดสมดุลสายการผลิต ชีวภูมิศาสตร์ -- แบบจำลองทางคณิตศาสตร์ จีเนติกอัลกอริทึม การหาค่าเชิงการจัดที่เหมาะที่สุด Production scheduling Assembly-line balancing Biogeography -- Mathematical models Genetic algorithms Combinatorial optimization



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram