Sequencing is an important method for solving the mixed model two-sided assembly lines problem to reach maximum production efficiency. Many factors such as multiple objectives and learning effect have to be considered in solving the sequencing problem. These make the problem more complicated as known as “NP-Hard problem”. In this research, a biogeography based optimization (BBO) algorithm is adopted for solving the sequencing problem to minimize variance of production rates, utility work and setup time. The results are compared with well-known algorithms such as non-dominated sorting genetic algorithm (NSGA-II), discrete particle swarm optimization (DPSO) and particle swarm optimization with negative knowledge (PSONK). The experiments show that BBO has performed effective results approximate to those performed by PSONK. Therefore, BBO adaptive has been applied for effectiveness comparison with the other algorithms. The result show that BBO adaptive is more effective in solving NP-hard problems than NSGAII, DPSO and PSONK algorithms.