Home / Help

Title Infinite elastic layer under axisymmetric surface loads and influence of surface stresses / Porjan Tuttipongsawat = ชั้นยืดหยุ่นไร้ขอบเขตภายใต้แรงกระทำสมมาตรรอบแกนและอิทธิพลของหน่วยแรงที่ผิว พอจันทร์ ตุฏฐิพงษ์สวัสดิ์ 2012 http://cuir.car.chula.ac.th/handle/123456789/30646 xiii, 75 leaves : ill

SUMMARY

To present a complete solution of an infinite, rigid based elastic layer under the action of axisymmetric surface loads by taking the surface energy effects into account. The corresponding boundary value problem is formulated based on a classical theory of linear elasticity for the bulk layer and a complete Gurtin-Murdoch constitutive relation for modeling the surface energy effects. In the solution procedure, an analytical technique based on Love’s representation and Hankel integral transform is adopted to derive an explicit integral-form solution for both the displacement and stress fields. A selected numerical quadrature is subsequently applied to efficiently evaluate all involved integrals. To demonstrate the influence of surface free energy and size-dependency, an extensive parametric study is carried out. The surface energy effects show strong influence on responses at the region closed to the surface and also when a length scale of the problem is comparable to the intrinsic length of the surface. Such influences are more evident when the contribution of the residual surface tension is taken into account. Moreover, three fundamental solutions are constructed by specializing the axisymmetric surface loads to a unit normal concentrated load, a unit normal ring load and a unit tangential ring load. Such basic results constitute the essential basis for the development of boundary integral equations governing other related problems, e.g., nano-indentations.
นำเสนอผลเฉลยสมบูรณ์ของชั้นยืดหยุ่นพื้นแข็งไร้ขอบเขต ภายใต้แรงกระทำสมมาตรรอบแกนโดยพิจารณาหน่วยแรงที่ผิว ปัญหาค่าขอบเขตที่สอดคล้องถูกสร้างขั้นโดยอาศัยทฤษฎีทั่วไปของความยืดหยุ่นเชิงเส้น สำหรับชั้นวัสดุและสมการของเกอร์ตินและเมอร์ดอครูปแบบสมบูรณ์ ในการจำลองพฤติกรรมของหน่วยแรงที่ผิว หลักการตัวแทนความเครียดศักดิ์ของเลิฟและการแปลงแฮนเคล ถูกนำมาใช้เพื่อให้ได้ผลเฉลยของการเคลื่อนที่และหน่วยแรงในรูปปริพันธ์ ซึ่งสามารถหาค่าได้จากการเลือกให้ระเบียบวิธีเชิงตัวเลขที่เหมาะสม จากการศึกษาอิทธิพลของหน่วยแรงที่ผิวและพฤติกรรมที่ขึ้นอยู่กับขนาดพบว่า หน่วยแรงที่ผิวมีอิทธิพลมากในบริเวณใกล้ผิวและเมื่อขนาดปัญหาใกล้เคียงกับความยาวอินทรินซิค อิทธิพลดังกล่าวเห็นได้ชัดเจนยิ่งขึ้นเมื่อนำผลของแรงตึงผิวคงค้างมาร่วมพิจารณาด้วย นอกจากนี้ได้มีการสร้างผลเฉลยพื้นฐานด้วยการเปลี่ยนแรงกระทำที่ผิวเป็นแรงกระทำตั้งฉากแบบจุดขนาดหนึ่งหน่วย แรงกระทำตั้งฉากแบบวงแหวนขนาดหนึ่งหน่วย และแรงกระทำสัมผัสขนาดหนึ่งหน่วย ผลเฉลยดังกล่าวเป็นพื้นฐานสำคัญในการพัฒนาสมการค่าขอบเขตของปัญหาอื่นๆ ที่เกี่ยวข้อง เช่น ปัญหาการกดในระดับนาโน

Elasticity Surfaces ‪(Technology)‬ Strains and stresses ความยืดหยุ่น พื้นผิววัสดุ (เทคโนโลยี) ความเครียดและความเค้น

Location

Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand