Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorWacharasak Siriseriwan
TitleAttributes scaling for K-means algorithm controlled by misclassification of all clusters / Wacharasak Siriseriwan = วิธีสเกลลักษณะประจำสำหรับขั้นตอนวิธีค่าเฉลี่ยเคควบคุมด้วยความผิดพลาดจากการจำแนกประเภทของทุกกลุ่ม / วัชรศักดิ์ ศิริเสรีวรรณ
Imprint 2008
Connect tohttp://cuir.car.chula.ac.th/handle/123456789/28440
Descript x, 96 leaves : ill., charts

SUMMARY

K-means clustering, one of the well-known distance-based clustering methods, is a very popular unsupervised machine learning using in various applications. Researchers try to integrate the concept of supervised learning to K-means clustering via attribute-scaling vector. With addition of this vector, K-means clustering can be supervised by the information of target class provided in the training set. In this thesis, we explore and determine the optimal attribute-scaled vector that minimizes the misclassification rate of the target class. This thesis uses the non-linear unconstrained optimization techniques in attribute-scaled space, called cyclic coordinate method and Hooke and Jeeves method. Our experiments show that both methods can provide the optimal scaling vectors which effectively reduce the misclassification error of supervised K-means clustering and lead to the effective supervised clustering in some data sets. For other data sets, the improvement of misclassification error is still achievable, but the error is too high suggesting that those datasets are not suitable to apply supervised clustering.
การแบ่งกลุ่มค่าเฉลี่ยเค ซึ่งเป็นหนึ่งในวิธีที่รู้จักโดยทั่วไปในการแบ่งกลุ่มด้วยระยะทาง เป็นวิธีการเรียนรู้ของเครื่องแบบไม่มีผู้สอนที่เป็นที่นิยมมาก และใช้ในงานประยุกต์ต่างๆอย่างหลากหลาย มีงานวิจัยในอดีตที่จะรวมแนวคิดของการเรียนรู้แบบมีผู้สอนเข้าไปในการแบ่งกลุ่มแบบค่าเฉลี่ยเค โดยผ่านเวกเตอร์ที่สเกลลักษณะประจำ ด้วยการเพิ่มเวกเตอร์นี้ การแบ่งกลุ่มแบบค่าเฉลี่ยสามารถกำกับดูแลด้วยข้อมูลของชั้นเป้าหมายซึ่งได้จัดเตรียมไว้ในข้อมูลสอน ในวิทยานิพนธ์นี้ เราค้นและเสาะหาเวกเตอร์สเกลลักษณะประจำที่เหมาะสมที่มีความผิดพลาดจากการจำแนกประเภทจากชั้นเป้าหมายต่ำที่สุด วิทยานิพนธ์นี้ใช้เทคนิคการหาค่าเหมาะที่สุดไม่เชิงเส้นแบบไม่มีเงื่อนไขบังคับในปริภูมิของสเกลลักษณะประจำสองแบบคือ วิธีการพิกัดวัฐจักรและวิธีของฮุคและจีพส์ การทดลองของเราแสดงให้เห็นว่าทั้งสองวิธีให้เวกเตอร์สเกลที่เหมาะสม ซึ่งสามารถลดความผิดพลาดจากการจำแนกประเภทของการแบ่งกลุ่มค่าเฉลี่ยเคแบบมีผู้สอนได้อย่างมีประสิทธิภาพ และยังนำไปสู่การจัดกลุ่มแบบมีผู้สอนที่ได้ผลกับข้อมูลบางชุด แต่ในบางชุดข้อมูล ความผิดพลาดไม่เปลี่ยนไปอย่างมีนัยสำคัญ ซึ่งสะท้อนให้เห็นว่าชุดข้อมูลดังกล่าว ไม่เหมาะสมในการที่จะทำการแบ่งกลุ่มแบบมีผู้สอน


อัลกอริทึม เหมืองข้อมูล การเรียนรู้ของเครื่อง การวิเคราะห์จัดกลุ่ม Algorithms Controlled Data mining Machine learning Cluster analysis

LOCATIONCALL#STATUS
Central Library @ Chamchuri 10 : Thesis510027LIB USE ONLY
Science Library : Thesisวพ.2551 / 5131CHECK SHELVES

Chulalinet's Book Delivery Request




Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram