This thesis describes the technique of the trajectory control of a robot arm which can interact with an environment by attaching a sensor at the end-effector of the manipulator. The robot using in this work is a 7 degrees of freedom manufactured by Mitsubishi Heavy Industrial, PA10-7C. But this work, we cover only 6 degrees of freedom. So a joint, the third joint of the manipulator, needed to be fixed. We derive, in detail the: Forward, Inverse, Jacobian, as well as Dynamic model of the manipulator, but limit to the 6 degrees of freedom by fixing the third joint. Simulations are carried out based on the derived equations as: an inverse dynamics control in joint space, an inverse dynamics control in operational space, and indirect force control using impedance control technique. For motion control in both joint space and operation space, the controller gains are tuned so that the tracking results are very good. Force the impedance control, only force regulation in operation space is covered. Forces are applied in the direction of the tool tip and end-effector displacements are recorded and displayed. The results can be used to evaluate the compliance of the manipulator arm. And it is shown that the compliance is linear within a boundary, approximate 0.8 mm from the start contact point. Beyond this distance, the dynamic is very stiff and better solver should be used.