Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorSawanya Sakuntasathien
TitleSome nonabsolutely convergent Lebesgue-type integrals / Sawanya Sakuntasathien = ปริพันธ์แบบเลอเบส์กบางรูปแบบที่ลู่เข้าอย่างไม่สัมบูรณ์ / สวรรยา ศกุนตะเสฐียร
Imprint 2001
Connect tohttp://cuir.car.chula.ac.th/handle/123456789/9819
Descript vii, 50 leaves : ill., charts

SUMMARY

As a general tool for integration, the Lebesgue integral is very useful. Its definition is quite general and it has a well-developed theory. However, it does have its limitations. An important limitation is that a function will be Lebesgue integrable only if its absolute value has finite integral, and there exist simple examples of functions that do not satisfy this property, yet intuition suggests they should be integrable. The generalized Riemann integral has helped to solve this problem. Unfortunately, it has a useful theory only for integration over subsets of finite-dimensional Euclidean space. This thesis introduces a new integral, the generalized Lebesgue integral, which can be defined on any sigma-finite measure space, and allows the integration of some functions whose absolute values have infinite integrals. The definition retains some of the flavor of the definition of the Lebesgue integral, and introduces two new concepts: expanding sequences, which are a generalization of monotonic sequences, and semiuniform convergence, which is a weak form of uniform convergence. In addition, to help structure the presentation, an abstract definition of measure-based integrals, called the abstract mu-integral, is introduced.
ปริพันธ์แบบเลอเบส์กเป็นเครื่องมือทั่วไปแบบหนึ่งที่มีประโยชน์มากสำหรับการหาปริพันธ์ บทนิยามของปริพันธ์แบบนี้มีความเป็นทั่วไปและปริพันธ์แบบนี้มีทฤษฎีที่พัฒนาอย่างดีแล้ว อย่างไรก็ตามปริพันธ์แบบนี้มีข้อจำกัดในการใช้บางประการ ข้อจำกัดที่สำคัญประการหนึ่งคือ ฟังก์ชันที่จะสามารถหาปริพันธ์แบบเลอเบส์กได้นั้นค่าปริพันธ์ของค่าสัมบูรณ์ของฟังก์ชันนั้นต้องมีค่าจำกัด แต่มีฟังก์ชันรูปแบบง่าย ๆ บางฟังก์ชันไม่มีคุณสมบัตินี้และมีแนวโน้มว่าฟังก์ชันเหล่านั้นน่าจะหาค่าปริพันธ์ได้ ปริพันธ์แบบรีมันน์เชิงทั่วไปสามารถแก้ปัญหานี้ได้ แต่เป็นที่น่าเสียดายว่า ทฤษฎีที่มีประโยชน์สำหรับการหาปริพันธ์ของปริพันธ์แบบรีมันน์เชิงทั่วไปใช้ได้เฉพาะเมื่อหาปริพันธ์บนเซตย่อยของปริภูมิยูคลิกเดียนที่มีมิติจำกัด วิทยานิพนธ์ฉบับนี้นำเสนอปริพันธ์แบบใหม่เรียกว่าปริพันธ์แบบเลอเบส์กเชิงทั่วไปซึ่งนิยามบนปริภูมิเมเชอร์จำกัดซิกมาใด ๆ และฟังก์ชันบางฟังก์ชันซึ่งปริพันธ์ของค่าสัมบูรณ์ของฟังก์ชันนั้นมีค่าไม่จำกัดสามารถหาปริพันธ์แบบนี้ได้ นิยามนี้รักษาสมบัติที่สำคัญของบทนิยามของปริพันธ์แบบเลอเบส์ก และนำเสนอแนวคิดใหม่สองแนวได้แก่ ลำดับกระจายซึ่งเป็นนัยทั่วไปของลำดับทางเดียว และการลู่เข้ากึ่งเอกรูปซึ่งเป็นรูปแบบอย่างอ่อนของการลู่เข้าเอกรูป นอกจากนี้เพื่อช่วยทำให้บทนิยามของการหาปริพันธ์แบบใหม่ง่ายต่อการเข้าใจและสะดวกต่อการนำไปใช้ จึงได้เสนอบทนิยามนามธรรมของปริพันธ์บนปริภูมิเมเชอร์ซึ่งจะเรียกว่าปริพันธ์มิวนามธรรม


Convergence Lebesgue integral

LOCATIONCALL#STATUS
Science Library : Thesisวพ.2544 / 2586CHECK SHELVES
Central Library @ Chamchuri 10 : Thesis440989LIB USE ONLY

Chulalinet's Book Delivery Request




Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram