Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorNoknoi Rompurk
TitleGeneralized transformation semigroups admitting hyperring structure / Noknoi Rompurk = เซมิกรุปแปลงนัยทั่วไปที่ให้โครงสร้างไฮเปอร์ริง / นกน้อย ร่มพฤกษ์
Imprint 2001
Connect tohttp://cuir.car.chula.ac.th/handle/123456789/9668
Descript [7], 48 leaves

SUMMARY

A semigroup S is said to admit a hyperring structure if there exists a hyperoperation + on S[superscript 0] such that (S[superscript 0], +, .) is a (Krasner) hyperring where . is the operation of S[superscript 0]. For a semigroup S and theta sigma S[superscript 1], let (S, theta) be the semigroup S under the operation * defined by x * y = x-theta-y for all x, y sigma S. The full transformation semigroup on a nonempty set X is denoted by T(X). For a vector space V over a division ring, let L(V) be the semigroup of all linear transformations alpha : V vector V under composition. In this research, we give characterizations determining when the semigroup (S, theta) with theta sigma S[superscript 1] admits a hyperring structure where S is any of the following subsemigroups of T(X) and of L(V) : T(X), M(X) = {alpha sigma T(X) | alpha is 1 - 1}, E(X) = {alpha sigma T(X) | Im-alpha = X} T[subscript 1](X) = {alpha sigma T(X) | Im-alpha is finite}, T[subscript 2](X) = {alpha sigma T(X) | X \ Im-alpha is finite}, T[subscript 3](X) = {alpha sigma T(X) | K(alpha) is finite} where K(alpha) = {x sigma X | alpha is not 1 - 1 at x}, T[subscript 4](X) = {alpha sigma T(X) | alpha is 1 - 1 and X \ Im-alpha is infinite} where X is infinite, T[subscript 5](X) = {alpha sigma T(X) | K(alpha) infinite and Im-alpha = X} where X is infinite, L(V), M(V) = {alpha sigma L(V) | alpha is 1 - 1}, E(V) = {alpha sigma L(V) | Imalpha = V} L[subscript 1](V) = {alpha sigma L(V) | dim Im-alpha is finite}, L[subscript 2](V) = {alpha sigma L(V) | dim (V / Im-alpha) is finite}, L[subscript 3](V) = {alpha sigma L(V) | dim Keralpha is finite} L[subscript 4](V) = {alpha sigma L(V) | alpha is 1 - 1 and dim (V / Im-alpha) is infinite} where V is infinite dimensional, L[subscript 5](V) = {alpha sigma L(V) | dim Ker-alpha is infinite and Im-alpha = V} where V is infinite dimensional.
เรากล่าวว่าเซมิกรุป S ให้โครงสร้างไฮเปอร์ริง ถ้ามีไฮเปอร์โอเปอเรชัน + บน S[superscript 0] ที่ทำให้ (S[superscript 0], +, .) เป็น (คราสเนอร์) ไฮเปอร์ริง โดยที่ . เป็นโอเปอเรชันของ S[superscript 0] สำหรับเซมิกรุป S และ theta sigma S[superscript 1] ให้ (S, theta) เป็นเซมิกรุป S ภายใต้โอเปอเรชัน * กำหนดโดย x * y = x-theta-y สำหรับทุก x, y sigma S เราให้ T(X) แทนเซมิกรุปการแปลงเต็มบนเซต X ซึ่งเป็นเซตไม่ว่าง สำหรับปริภูมิเวกเตอร์ V บนริงการหารให้ L(V) เป็นเซมิกรุปของการแปลงเชิงเส้น alpha : V vector V ทั้งหมดภายใต้การประกอบ ในการวิจัยนี้เราให้ลักษณะที่จะบอกว่าเซมิกรุป (S, theta) โดย theta sigma S[superscript 1] ให้โครงสร้างไฮเปอร์ริงเมื่อใด โดยที่ S เป็นเซมิกรุปย่อยใดๆ ของ T(X) และ L(V) ต่อไปนี้ T(X) M(X) = {alpha sigma T(X) | alpha หนึ่งต่อหนึ่ง} E(X) = {alpha sigma T(X) | Im-alpha = X} T[subscript 1](X) = {alpha sigma T(X) | Im-alpha เป็นเซตอันตะ} T[subscript 2](X) = {alpha sigma T(X) | X \ Im-alpha เป็นเซตอันตะ} T[subscript 3](X) = {alpha sigma T(X) | K(alpha) เป็นเซตอันตะ} เมื่อ K(alpha) = {x sigma X | alpha ไม่หนึ่งต่อหนึ่งที่ x} T[subscript 4](X) = {alpha sigma T(X) | alpha หนึ่งต่อหนึ่ง และ X \ Im-alpha เป็นเซตอนันต์} เมื่อ X เป็นเซตอนันต์ T[subscript 5](X) = {alpha sigma T(X) | K(alpha) เป็นเซตอนันต์ และ Im-alpha = X} เมื่อ X เป็นเซตอนันต์ L(V) M(V) = {alpha sigma L(V) | alpha หนึ่งต่อหนึ่ง} E(V) = {alpha sigma L(V) | Im-alpha = V} L[subscript 1](V) = {alpha sigma L(V) | dim Im-alpha อันตะ} L[subscript 2](V) = {alpha sigma L(V) | dim (V / Im-alpha) อันตะ} L[subscript 3](V) = {alpha sigma L(V) | dim Keralpha อันตะ} L[subscript 4](V) = {alpha sigma L(V) | alpha หนึ่งต่อหนึ่ง และ dim (V / Im-alpha) อนันต์} เมื่อ V เป็นปริภูมิเวกเตอร์ที่มีมิติอนันต์ L[subscript 5](V) = {alpha sigma L(V) | dim Ker-alpha อนันต์ และ Im-alpha = V} เมื่อ V เป็นปริภูมิเวกเตอร์ที่มีมิติอนันต์


Semigroups Semigroup rings

LOCATIONCALL#STATUS
Science Library : Thesisวพ.2544 / 2591CHECK SHELVES
Central Library @ Chamchuri 10 : Thesis440424LIB USE ONLY

Chulalinet's Book Delivery Request




Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram