Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorUmarin Pintoptang
TitleSome sufficient conditions for cyclic trajectories in a two-dimensional analog of the 3x+1 problem / Umarin Pintoptang = เงื่อนไขที่เพียงพอบางประการสำหรับแนววิถีที่เป็นวัฏจักรที่คล้ายคลึงกับปัญหา 3x+1 ใน 2 มิติ / อุมารินทร์ ปิ่นตบแต่ง
Imprint 2001
Connect tohttp://cuir.car.chula.ac.th/handle/123456789/11613
Descript vii, 47 leaves : ill.

SUMMARY

The 3x+1 problem concerns the behavior of the iterates of the function defined by T(x) = (3x+1)/2 if x is odd, T(x) = x/2 if x is even. The 3x+1 Conjecture asserts that, starting from any positive integer alpha , repeated iteration of this function eventually produces the value 1. In this thesis we study the following extended version of the above problem. Let Z* be the set of all nonnegative integers. Let k be any fixed prime number and D=[k 0], D=[0 k] Let A be any 2x2 matrix of positive integers. For a fixed beta is an element of a set Z*2, let T: Z*2 -> Z*2 be defined by, for each alpha is an element of a set Z*2, T(alpha) = D-1 alpha if D-1 alpha is an element of a set Z*2, T(alpha) = A alpha + beta if D-1 alpha is not an element of a set Z*2. The research reported in this thesis concerns determining whether or not the trajectory [alpha, T(alpha), T2 (alpha), ...] is cyclic. For some forms of the matrix A it is proved that the trajectory cannot be cyclic for any choice of beta is an element of a set Z*2. In some other cases values of beta are given which ensure a cyclic trajectory.
ปัญหา 3x+1 เป็นปัญหาเกี่ยวกับพฤติกรรมของการดำเนินการซ้ำของฟังก์ชันซึ่งนิยามโดย T(x) =(3x+1)/2 เมื่อ x เป็นจำนวนคี่, T(x) = x/2 เมื่อ x เป็นจำนวนคู่ ข้อความคาดการณ์ 3x+1 กล่าวว่า ถ้าเริ่มต้นจากจำนวนเต็มบวก alpha ใด ๆ ดำเนินการส่งด้วย ฟังก์ชันข้างต้นซ้ำๆ กันในที่สุดจะได้ค่าเป็น 1 ในวิทยานิพนธ์ฉบับนี้เราจะขยายการศึกษาปัญหาดังกล่าวดังนี้ ให้ Z* เป็นเซตของจำนวนเต็มที่ไม่เป็นลบทั้งหมด ให้ k เป็นจำนวนเฉพาะคงที่และ D=[k 0], D=[0 k] ให้ A เป็นเมตริกซ์ของจำนวนเต็มบวกขนาด 2x2 ใดๆ สำหรับแต่ละค่า beta ที่คงที่ใน Z*2 ให้ T: Z*2 -> Z*2 กำหนดโดย สำหรับแต่ละ alpha is an element of a set Z*2, T(alpha) = D-1 alpha if D-1 alpha is an element of a set Z*2, T(alpha) = A alpha + beta if D-1 alpha is not an element of a set Z*2 ผลการวิจัยที่รายงานในวิทยานิพนธ์ฉบับนี้เกี่ยวกับการยืนยันว่าแนววิถี [alpha, T(alpha), T2 (alpha),...] จะเป็นวัฏจักรหรือไม่ เราพิสูจน์ว่าสำหรับเมตริกซ์ A บางรูปแบบแนววิถีไม่เป็นวัฏจักรไม่ว่าจะเลือก beta is an element of a set Z*2 เป็นค่าใดก็ตามและสำหรับเมตริกซ์ A บางรูปแบบค่าของ beta ที่กำหนดให้จะรับประกันได้ว่าแนววิถีจะเป็นวัฏจักร


Iterative methods (Mathematics) Numerical analysis วิธีการคำนวณซ้ำ การวิเคราะห์เชิงตัวเลข

LOCATIONCALL#STATUS
Science Library : Thesisวพ.2544 / 2592CHECK SHELVES
Central Library @ Chamchuri 10 : Thesis440952LIB USE ONLY

Chulalinet's Book Delivery Request




Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram