Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

Authorพจนา แววสวัสดิ์, 2519-
Titleการเปรียบเทียบเกณฑ์การคัดเลือกตัวแบบความถดถอยพหุนามแบบติดกลุ่ม / พจนา แววสวัสดิ์ = A comparison of the model selection criteria for nested polynomial regression models / Potjana Walsawat
Imprint 2543
Connect tohttp://cuir.car.chula.ac.th/handle/123456789/67881
Descript 159 แผ่น : แผนภูมิ

SUMMARY

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อเปรียบเทียบเกณฑ์การคัดเลือกตัวแบบความถดถอยพหุนามแบบติดกลุ่ม ซึ่งตัวแบบทั่วไปของตัวแบบความถดถอยพหุนามมีรูปแบบดังนี้ Y = X β+£ เมื่อ Y แทน เวกเตอร์สุ่มของตัวแปรตามขนาด n x 1, X แทน เมทริกซ์ของตัวแปรอิสระที่ควบคุมให้คงที่ขนาด n x (p+1), β แทนพารามิเตอร์เวกเตอร์ของสัมประสิทธิ์ความถดถอยขนาด(p'+1)x1, £ แทนเวกเตอร์ความคลาดเคลื่อนลุ่มที่เกิดขึ้นขนาด n x 1โดย £~N (0, 2I) ,1 แทน เมทริกช์เอกลักษณ์ขนาด n x n, n แทน จำนวนข้อมูลที่สังเกต และ P’ แทน จำนวนตัวแปรอิสระ เกณฑ์ที่ใช้ในการคัดเลือกตัวแบบมี 3 เกณฑ์ คือ เกณฑ์การคัดเลือกตัวแบบโดยสถิติทดสอบเอฟบางส่วน (The partial F-test statistic) ด้วยวิธีการกำจัดตัวแปรแบบถอยหลัง(Backward Elimination (BW)) วิธีนี้จะเริ่มจากการพิจารณาตัวแปรอิสระทุกตัว แล้วกำจัดตัวแปรอิสระที่ไม่มีระดับนัยสำคัญออกที่ละตัว ซึ่งมีตัวสถิติอยู่ในรูปของ [สูตรสมการ]เมื่อ SSE, แทน ผลบวกกำลังสองของความคลาดเคลื่อนสำหรับตัวแบบ j, SSEk แทน ผลบวกกำลังลองของความคลาดเคลื่อนสำหรับตัวแบบ k, pk,Pj แทน จำนวนพารามิเตอร์ของตัวแบบที่ j และ k เกณฑ์การคัดเลือกตัวแบบโดยข้อสนเทศของอาไคเคะ(Akaike’s Information Criterion(AIC)) เกณฑ์นี้มีข้อตกลงเบื้องด้น คือ ตัวประมาณได้มาจากวิธีการภาวะน่าจะเป็นสูงสุดโดยตัวแบบที่ให้ค่า AIC ตํ่าสุดจะเป็นตัวแบบที่ดีที่สุด ซึ่งมีตัวสถิติอยู่ในรูปของ AIC = -2 log(MI,j - MLk) + 2(pj- pk ) เมื่อ MLj,,MLk แทน ตัวประมาณภาวะน่าจะเป็นสูงสุดของตัวแบบที่ j และ k , pj,,pk แทน จำนวนพารามิเตอร์ของตัวแบบที่ j และ k และ เกณฑ์การคัดเลือกตัวแบบโดยข้อสนเทศของเบส์ (Bayesian Information Criterion (BIC)) เป็นเกณฑ์ที่พิจารณาจากความน่าจะเป็นภายหลัง มีตัวสถิติอยู่ในรูปของ
The objective of this study is to compare model selection criteria for nested polynomial regression model. The general model for polynomial regression is show as follows: Y = X β+£ where Y is an n x 1 random vector of dependent variables; X is an n x (p+1) fixed matrix of independent variables; β is a (p + 1)x1 unknown parametric vector of regression coefficients; £ is an n x 1 random vector of errors and £ is normally distributed with mean vector 0 and variance-covariance matrix 2I ; I is an n x n identity matrix ; 2 is the variance of random errors; n is the number of observed data and p is number of independent variables. The 3 stopping criteria of model selection are the partial F-test statistic using backward elimination (BW), Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC) respectively. The BW method is started with putting all independent variables in the model and then eliminating each variable, one at a time, using the partial F-test statistic as the stopping criterion. The test statistic is as follows: [Equation] SSEj is the sum of square errors for the model j., SSEk is the sum of square errors for the model k, pk,pj is the number of parameters in model j and k. The AIC criterion uses the maximum likelihood method for each corresponding model as the stopping criterion. The test statistic is as follows: AIC = -2 log (MLk – MLj) +2(pk – pj); MLj,MLk is the maximum likelihood estimators form model j and k. pj, pk is the number of parameters in model j and k. The BIC criterion uses the posterior probability for each corresponding model as the stopping criterion. The test statistic is as follows: BIC = -2 log [Equation] β -j, βk is the maximum likelihood estimator for model j and k, Mj,Mk Is the model j and k. p (X β-k, Mk) is the posterior probability for the corresponding model. The compare is done by the model generation using a monte carto technique through S-plus 2000 code. The number of independent variables is 3 5 9 14 20 and 27 respectively. The random error are generated with normal distribution with me and 0 and standard deviation 5 10 20 and 25 respectively. The number of observed data varies form 35 50 75 and 100. The degree of collinearity among independent variables is changed from 0(orthogonality among independent variables), 0.5 to 1. Significant levels is 0.05 and 0.01. The averaqe of mean square error (AMSE) from each criterion, between the predicted value calculate from each selected model and the true values is use to compare these 3 model selection criteria. The result of the study show that when the independent variables are orthogonal, the predicted value from BIC criterion provide the minimum average of mean square error (AMSE), in all simulated cases. When independent variables are not orthogonal and they are interrelated, the nearly orthogonal situation can be done through data centering. This will result in making the AMSE for the predicted value from BIC minimum in all situations. However the nearly orthogonalized independent variables for such case will be appropriate only when the exponent of the between 1 to 3. When the model exponent of the model is from 4 to 6, the polynomial orthogonalization of the independent variables can be better achievable than the data centering and this will result in making the AMSE for the because the AMSE of centering data is highest orthogonal polynomial, the predicted value from BIC minimum in all cases as well.


การวิเคราะห์การถดถอย การวิเคราะห์ตัวแปรพหุ พหุสัมพันธ์ Multivariate analysis Multicollinearity

LOCATIONCALL#STATUS
Chula Business School Library : Thesis2010CHECK SHELVES

Chulalinet's Book Delivery Request




Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram