Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

TitleFault immunization for supervised artificial neural networks / Khamron Sunat = การสร้างภูมิคุ้มกันความผิดพร่องสำหรับโครงข่ายประสาทเทียมชนิดกำหนดเป้าหมายการเรียนรู้
Author คำรณ สุนัติ
Imprint 1998
Connect tohttp://cuir.car.chula.ac.th/handle/123456789/10322
Descript 37 leaves

SUMMARY

Fault immunization is a technique to further enhance fault tolerance of a neural network. The technique of Chun and McNamee is based on the trial-and-error training, which requires a high computational time. Lursinsap and Tanprasert proposed a mathematical model to capture the characteristic of the fault immunization. However, this model is performed locally to each neuron after training, which may deteriorate the target error and increase the computation time. A generalized mathematical model for the fault immunization is proposed in this thesis by considering the global immunization to enhance the immunity. This model is based on a new cost function, which combines the target error function with the immunization function. We also propose a feasible modified random optimization algorithm to improve the tolerance and several related theorems are proved. From the simulation results, the fault immunity was significantly improved.
การสร้างภูมิคุ้มกันความผิดพร่องเป็นเทคนิคที่เพิ่มความทนทานต่อการผิดพร่องของโครงข่ายประสาทเทียม เทคนิคของ Chun และ McNamee อยู่บนพื้นฐานของการลองผิดลองถูก ซึ่งใช้เวลาในการคำนวณมาก Lursinsap และ Tanprasert เสนอแบบจำลองทางคณิตศาสตร์เพื่อจับลักษณะสำคัญของการสร้างภูมิคุ้มกันความผิดพร่อง อย่างไรก็ตามแบบจำลองนี้กระทำกับแต่ละเซลประสาทแบบเฉพาะที่ ซึ่งอาจจะผิดพลาดมากขึ้นและเวลาในการคำนวณเพิ่มขึ้นในวิทยานิพนธ์นี้ เสนอแบบจำลองทางคณิตศาสตร์แบบทั่วไปสำหรับการสร้างภูมิคุ้มกันความผิดพร่อง โดยพิจารณาการสร้างภูมิคุ้มกันแบบทั่วไปเพื่อลดเวลาในการคำนวณ ซึ่งฟังก์ชั่นต้นทุนแบบใหม่เป็นการรวมฟังก์ชั่นวัดค่าผิดพลาดต่อเป้าหมายและฟังก์ชั่นวัดภูมิคุ้มกันเข้าด้วยกัน และเสนอขั้นตอนวิธีการหาค่าเหมาะสมแบบสุ่มที่ถูกปรับแก้เพื่อการปรับปรุงความทนทานของโครงข่ายประสาทเทียม มีการพิสูจน์ทฤษฎีต่างๆ ที่เกี่ยวข้อง ผลการจำลองการทำงานโครงข่ายประสาทเทียมมีภูมิคุ้มกันความผิดพร่องเพิ่มขึ้นอย่างเห็นได้ชัด


แบบจำลองทางคณิตศาสตร์ ภูมิคุ้มกันความผิดพร่อง นิวรัลเน็ตเวิร์ค (วิทยาการคอมพิวเตอร์)

LOCATIONCALL#STATUS
Science Library : Thesisวพ.2541 / 1998CHECK SHELVES

Chulalinet's Book Delivery Request




Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram