 
    
    
| Author | Haken, Hermann. author | 
|---|---|
| Title | Laser Theory [electronic resource] / by Hermann Haken | 
| Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1984 | 
| Connect to | http://dx.doi.org/10.1007/978-3-642-45556-8 | 
| Descript | XVI, 322 p. online resource | 
I. Introduction -- 1.1. The maser principle -- 1.2. The laser condition -- 1.3. Properties of laser light -- a) Spatial coherence -- b) Temporal coherence -- c) Photon statistics -- d) High intensity -- e) Ultrashort pulses -- 1.4. Plan of the article -- II. Optical resonators -- II.1. Introduction -- II.2. The Fabry-Perot resonator with plane parallel reflectors -- a) Spatial distribution of modes -- b) Diffraction losses -- c) Three-dimensional resonator -- II.3. Confocal resonator -- a) Field outside the resonator -- b) Field inside the resonator -- c) Far field pattern of the confocal resonator -- d) Phase shifts and losses -- II.4. More general configurations -- a) Confocal resonators with unequal square and rectangular apertures -- b) Resonators with reflectors of unequal curvature -- ?) Large circular apertures -- ?) Large square aperture -- II.5. Stability -- III. Quantum mechanical equations of the light field and the atoms without losses -- III.1. Quantization of the light field -- III.2. Second quantization of the electron wave field -- III.3. Interaction between radiation field and electron wave field -- III.4. The interaction representation and the rotating wave approximation -- III.5. The equations of motion in the Heisenberg picture -- III.6. The formal equivalence of the system of atoms each having 2 levels with a system of ยฝ spins -- IV. Dissipation and fluctuation of quantum systems. The realistic laser equations -- IV.1. Some remarks on homogeneous and inhomogeneous broadening -- a) Natural linewidth -- b) Inhomogeneous broadening -- ?) Impurity atoms in solids -- ?) Gases -- ?) Semiconductors -- c) Homogeneous broadening -- ?) Impurity atoms in solids -- ?) Gases -- ?) Semiconductors -- IV.2. A survey of IV.2.โIV.11 -- a) Definition of heatbaths (reservoirs) -- b) The role of heatbaths -- c) Classical Langevin and Fokker-Planck equations -- ?) Langevin equations -- ?) The Fokker-Planck equation -- d) Quantum mechanical formulation: the total Hamiltonian -- e) Quantum mechanical Langevin equations, Fokker-Planck equation and density matrix equation -- ?) Langevin equations -- ?) Density matrix equation -- ?) Generalized Fokker-Planck equation -- IV.3. Quantum mechanical Langevin equations: origin of quantum mechanical Langevin forces (the effect of heatbaths) -- a) The field (one mode) -- b) Electrons (โatomsโ) -- IV.4. The requirement of quantum mechanical consistency -- a) The field -- b) Dissipation and fluctuations of the atoms -- IV. 5. The explicit form of the correlation functions of Langevin forces -- a) The field -- b) The N-level atom -- IV. 6. The complete laser equations -- a) Quantum mechanically consistent equations for the operators b?+ and (ai+ak)? -- ?) The field equations -- ?) The matter equations -- b) Semiclassical equations -- ?) The field equations -- ?) The matter equations -- IV.7. The density matrix equation -- a) General derivation -- b) Specialization of Eq. (IV.7.31) -- ?) Light mode -- ?) Atom -- ?) The density matrix equation of the complete system of M laser modes and N atoms -- IV. 8. The evaluation of multi-time correlation functions by the single-time density matrix -- IV.9. Generalized Fokker-Planck equation: definition of distribution functions -- a) Field -- ?) Wigner distribution function and related representations -- ?) Transforms of the distribution functions: characteristic functions -- ?) Calculation of expectation values by means of the distribution functions -- b) Electrons -- ?) Distribution functions for a single electron -- ?) Characteristic functions -- ?) Electrons and fields -- IV. 10. Equation for the laser distribution function (IV.9.22) -- a) Comparison of the advantages of the Heisenberg and the Schrรถdinger representations -- ?) The Heisenberg representation -- ?) The Schrรถdinger representation -- b) Final form of the generalized Fokker-Planck equation -- IV.11. The calculation of multi-time correlation functions by means of the distribution function -- V. Properties of quantized electromagnetic fields -- V.1. Coherence properties of the classical and the quantized electromagnetic field -- a) Classical description: definitions -- ?) The complex analytical signal -- ?) The average -- ?) The mutual coherence function -- b) Quantum theoretical coherence functions -- ?) Elementary introductions -- ?) Coherence functions -- ?) Coherent wave functions -- ?) Generation of coherent fields by classical sources (the forced harmonic oscillator) -- V.2. Uncertainty relations and limits of measurability -- a) Field and photon number -- b) Phase and photon number -- ?) Heuristic considerations -- ?) Exact treatment -- c) Field strength -- V.3. Spontaneous and stimulated emission and absorption -- a) Spontaneous emission -- b) Stimulated emission -- c) Comparison between spontaneous and stimulated emission rates -- d) Absorption -- V.4. Photon counting -- a) Quantum mechanical treatment, correlation functions -- b) Classical treatment of photon counting -- V.5. Coherence properties of spontaneous and stimulated emission. The spontaneous linewidth -- VI. Fully quantum mechanical solutions of the laser equations -- VI.1. Disposition -- VI.2. Summary of theoretical results and comparison with the experiments -- a) Qualitative discussion of the characteristic features of the laser output: homogeneously broadened line -- b) Quantitative results: single mode action -- ?) The spectroscopic linewidth well above threshold -- ?) The spectroscopic linewidth somewhat below threshold -- ?) The intensity (or amplitude) fluctuations -- ?) Photon statistics -- VI.3. The quantum mechanical Langevin equations for the solid state laser -- a) Field equations -- b) Matter equations -- ?) The motion of the atomic dipole moment -- 1. Dipole moment between levels j and k -- 2. Dipole moment between levels l and l?k, j and between levels k and l=j, k -- 3. Dipole moment between levels i? k, j and l ? k, j -- ?) The occupation numbers change -- 1. For the laser levels j and k -- 2. For the non-laser levels -- VI.4. Qualitative discussion of single mode operation -- a) The linear range (subthreshold region) -- b) The nonlinear range (at threshold and somewhat above) -- ?) Phase diffusion -- ?) Amplitude (intensity) fluctuations -- c) The nonlinear range at high inversion -- d) Exact elimination of all atomic coordinates -- VI.5. Quantitative treatment of a homogeneously broadened transition: emission below threshold (intensity, linewidth, amplification of signals) -- a) No external signals -- ?) Single-mode linewidth below threshold -- ?) Many modes below threshold -- b) External signals -- VI.6. Exact elimination of atomic variables in the case of a homogeneously broadened line. Running or standing waves -- ?) Standing waves -- ?) Running waves -- VI.7. Single mode operation above threshold, homogeneously broadened line -- a) Lowest order -- b) First order -- c) Phase noise. Linewidth formula -- d) Amplitude fluctuations -- ?) The special case of a moderate photon number -- ?) The special case of a big photon number -- VI.8. Stability of amplitude. Spiking and damped oscillations. Single-mode operation, homogeneously broadened line -- a) Qualitative discussion -- b) Quantitative treatment -- c) The special case w13?? (โtwo level systemโ) -- VI.9. Qualitative discussion of two-mode operation -- a) Some transformations -- b) Both modes well below threshold -- c) Modes somewhat above or somewhat below threshold -- d) Both modes above threshold -- ?) |?1 ? ?2| ? 1/T -- ?) |?1 ? ?2| ? 1/T -- VI. 10. Gas laser and solid-state laser with an inhomogeneously broadened line. The van der Pol equation, single-mode operation -- a) Solid-state laser with an inhomogeneously broadened line and an arbitrary number of levels -- b) Gas laser -- VI.11. Direct solution of the density matrix equation -- VI.12. Reduction of the generalized Fokker-Planck equation for single-mode action -- a) Expansion in powers of N?ยฝ (N: number of atoms) -- b) Adiabatic elimination of the atomic variables -- c) The Fokker-Planck equation -- VI. 13. Solution of the reduced Fokker-Planck equation -- a) Steady state solution -- b) Transient solution -- VI. 14. The Fokker-Planck equation for multimode action near threshold. Exact or nearly exact stationary solution -- a) The explicit form of the Fokker-Planck equation -- b) Theorem on the exact stationary solution of a Fokker-Planck equation -- c) Nearly exact solution of (VI. 14.1) -- ?) Normal multimode action -- ?) Phase locking of many modes -- ?) A qualitative discussion of phase locking (example of three modes) -- VI. 15. The linear and quasi-linear solution of the general Fokker-Planck equation -- a) Far below threshold -- b) Well above threshold -- VII. The semiclassical approach and its applications -- VII.1. Spirit of the semiclassical approach. The equations for the solid state laser -- a) The field equations -- b) The material equations -- c) Macroscopic treatment -- ?) Wave picture, inhomogeneous atomic line -- ?) Wave picture, homogeneous atomic line -- ?) Wave picture, homogeneous atomic line, rotating wave approximation, slowly varying amplitude approximation -- ?) Mode picture, polarization waves -- d) Extension to multilevel atoms -- e) Systematics of the semiclassical approach -- VII.2. Method of solution for the stationary state -- a) Single-mode operation, general features -- b) Two-mode operation, general features -- ?) Time-independent atomic response -- ?) Time-dependent atomic response -- VII.3. The solid-state laser with a homogeneously broadened line. Single and multimode laser action -- a) Single-mode operation -- b) Multiple-mode operation -- ?) Equations for the photon densities of M modes -- ?) Equations for the frequency shift -- VII.4. The solid-state laser with an inhomogeneously broadened Gaussian line. Single-and two-mode operation -- a) One mode -- ?) Equation for the frequency shift -- ?) Equation for the ph