Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorCaenepeel, Stefaan. author
TitleFrobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations [electronic resource] / by Stefaan Caenepeel, Gigel Militaru, Shenglin Zhu
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 2002
Connect to
Descript XIV, 354 p. online resource


Doi-Koppinen Hopf modules and entwined modules unify various kinds of modules that have been intensively studied over the past decades, such as Hopf modules, graded modules, Yetter-Drinfeld modules. The book presents a unified theory, with focus on categorical concepts generalizing the notions of separable and Frobenius algebras, and discussing relations with smash products, Galois theory and descent theory. Each chapter of Part II is devoted to a particular nonlinear equation. The exposรฉ is organized in such a way that the analogies between the four are clear: the quantum Yang-Baxter equation is related to Yetter-Drinfeld modules, the pentagon equation to Hopf modules, and the Long equation to Long dimodules. The Frobenius-separability equation provides a new viewpoint to Frobenius and separable algebras


Part I: Entwined modules and Doi-Koppinen Hopf modules -- 1. Generalities -- 2. Doi-Koppinen Hopf modules and entwined modules -- 3. Frobenius and separable functors for entwined modules -- 4. Applications -- Part II: Nonlinear equations -- 5. Yetter-Drinfeld modules and the quantum Yang-Baxter equation -- 6. Hopf modules and the pentagon equation -- 7. Long dimodules and the Long equation -- 8. The Frobenius-Separability equation -- References -- Index

Mathematics Associative rings Rings (Algebra) Mathematics Associative Rings and Algebras


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram