Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorSchwartz, Laurent. author
TitleGeometry and Probability in Banach Spaces [electronic resource] / by Laurent Schwartz, Paul R. Chernoff
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1981
Connect to
Descript XII, 108 p. online resource


Type and cotype for a Banach space p-summing maps -- Pietsch factorization theorem -- Completely summing maps. Hilbert-Schmidt and nuclear maps -- p-integral maps -- Completely summing maps: Six equivalent properties. p-Radonifying maps -- Radonification Theorem -- p-Gauss laws -- Proof of the Pietsch conjecture -- p-Pietsch spaces. Application: Brownian motion -- More on cylindrical measures and stochastic processes -- Kahane inequality. The case of Lp. Z-type -- Kahane contraction principle. p-Gauss type the Gauss type interval is open -- q-factorization, Maurey's theorem Grothendieck factorization theorem -- Equivalent properties, summing vs. factorization -- Non-existence of (2+?)-Pietsch spaces, Ultrapowers -- The Pietsch interval. The weakest non-trivial superproperty. Cotypes, Rademacher vs. Gauss -- Gauss-summing maps. Completion of grothendieck factorization theorem. TLC and ILL -- Super-reflexive spaces. Modulus of convexity, q-convexity "trees" and Kelly-Chatteryji Theorem Enflo theorem. Modulus of smoothness, p-smoothness. Properties equivalent to super-reflexivity -- Martingale type and cotype. Results of Pisier. Twelve properties equivalent to super-reflexivity. Type for subspaces of Lp (Rosenthal Theorem)

Mathematics Geometry Probabilities Mathematics Probability Theory and Stochastic Processes Geometry


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram