Author | Krall, Allan M. author |
---|---|
Title | Applied Analysis [electronic resource] / by Allan M. Krall |
Imprint | Dordrecht : Springer Netherlands, 1986 |
Connect to | http://dx.doi.org/10.1007/978-94-009-4748-1 |
Descript | XI, 561 p. online resource |
I. Some Inequalities -- 1. Youngโ{128}{153}s Inequality -- 2. Hรถlderโ{128}{153}s Inequality -- 3. Minkowskiโ{128}{153}s Inequality -- 4. A Relation between Different Norms -- II. Linear Spaces and Linear Operators -- 1. Linear Spaces -- 2. Linear Operators -- 3. Norms and Banach Spaces -- 4. Operator Convergence -- III. Existence and Uniqueness Theorems -- 1. The Contraction Mapping Theorem -- 2. Existence and Uniqueness of Solutions for Ordinary Differential Equations -- 3. First Order Linear Systems -- 4. n-th Order Differential Equations -- 5. Some Extensions -- IV. Linear Ordinary Differential Equations -- 1. First Order Linear Systems -- 2. Fundamental Matrices -- 3. Nonhomogeneous Systems -- 4. n-th Order Equations -- 5. Nonhomogeneous n-th Order Equations -- 6. Reduction of Order -- 7. Constant Coefficients -- V. Second Order Ordinary Differential Equations -- 1. A Brief Review -- 2. The Adjoint Operator -- 3. An Oscillation Theorem -- 4. The Regular Sturm-Liouville Problem -- 5. The Inverse Problem, Greenโ{128}{153}s Functions -- VI. The Stone-Weierstrass Theorem -- 1. Preliminary Remarks -- 2. Algebras and Subalgebras -- 3. The Stone-Weierstrass Theorem -- 4. Extensions and Special Cases -- VII. Hilbert Spaces -- 1. Hermitian Forms -- 2. Inner Product Spaces -- 3. Hilbert Spaces -- 4. Orthogonal Subspaces -- 5. Continuous Linear Functionals -- 6. Fourier Expansions -- 7. Isometric Hilbert Spaces -- VIII. Linear Operators on a Hilbert Space -- 1. Regular Operators on a Hilbert Space -- 2. Bilinear Forms, the Adjoint Operator -- 3. Self-Adjoint Operators -- 4. Projections -- 5. Some Spectral Theorems -- 6. Operator Convergence -- 7. The Spectral Resolution of a Self-Adjoint Operator -- 8. The Spectral Resolution of a Normal Operator -- 9. The Spectral Resolution of a Unitary Operator -- IX. Compact Operators on a Hilbert Space -- 1. Compact Operators -- 2. Some Special Examples -- 3. The Spectrum of a Compact Self-Adjoint Operator -- 4. The Spectral Resolution of a Compact, Self-Adjoint Operator -- 5. The Regular Sturm-Liouville Problem -- X. Special Functions -- 1. Orthogonal Polynomials -- 2. The Legendre Polynomials -- 3. The Laguerre Polynomials -- 4. The Hermite Polynomials -- 5. Bessel Functions -- XI. The Fourier Integral -- 1. The Lebesgue Integral -- 2. The Fourier Integral in L1(-?, ?) -- 3. The Fourier Integral in L2(-?, ?) -- XII. The Singular Sturm-Liouville Problem -- 1. Circles under Bilinear Transformations -- 2. Hellyโ{128}{153}s Convergence Theorems -- 3. Limit Points and Limit Circles -- 4. The Limit Point Case -- 5. The Limit Circle Case -- 6. Examples -- XIII. An Introduction to Partial Differential Equations -- 1. The Cauchy-Kowaleski Theorem -- 2. First Order Equations -- 3. Second Order Equations -- 4. Greenโ{128}{153}s Formula -- XIV. Distributions -- 1. Test Functions and Distributions -- 2. Limits of Distributions -- 3. Fourier Transforms of Distributions -- 4. Applications of Distributions to Ordinary Differential Equations -- 5. Applications of Distributions to Partial Differential Equations -- XV. Laplaceโ{128}{153}s Equation -- 1. Introduction, Well Posed Problems -- 2. Dirichlet, Neumann, and Mixed Boundary Value Problems -- 3. The Dirichlet Problem -- 4. The Dirichlet Problem on the Unit Circle -- 5. Other Examples -- XVI. The Heat Equation -- 1. Introduction, the Cauchy Problem -- 2. The Cauchy Problem with Dirichlet Boundary Data -- 3. The Solution to the Nonhomogeneous Cauchy Problem -- 4. Examples -- 5. Homogeneous Problems -- XVII. The Wave Equation -- 1. Introduction, the Cauchy Problem -- 2. Solutions in 1, 2 and 3 Dimensions -- 3. The Solution to the Nonhomogeneous Cauchy Problem -- 4. Examples -- Appendix I The Spectral Resolution of an Unbounded Self-Adjoint Operator -- 1. Unbounded Linear Operators -- 2. The Graph of an Operator -- 3. Symmetric and Self-Adjoint Operators -- 4. The Spectral Resolution of an Unbounded Self-Adjoint Operator -- Appendix II The Derivation of the Heat, Wave and Lapace Equations -- 1. The Heat Equation -- 2. Boundary Conditions -- 3. The Wave Equation -- 4. Boundary Conditions -- 5. Laplaceโ{128}{153}s Equation