Author | Miranda, Carlo. author |
---|---|
Title | Partial Differential Equations of Elliptic Type [electronic resource] / by Carlo Miranda |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1970 |
Edition | Second Revised Edition |
Connect to | http://dx.doi.org/10.1007/978-3-642-87773-5 |
Descript | XII, 370 p. online resource |
I. Boundary value problems for linear equations -- 1. Sets of points; functions -- 2. Elliptic equations -- 3. Maximum and minimum properties of the solutions of elliptic equations -- 4. Various types of boundary value problems -- 5. Uniqueness theorems -- 6. Greenโ{128}{153}s formula -- 7. Compatibility conditions for the boundary value problems; other uniqueness theorems -- 8. Levi functions -- 9. Stokesโ{128}{153}s formula -- 10. Fundamental solutions; Greenโ{128}{153}s functions -- II. Functions represented by integrals -- 11. Products of composition of two kernels -- 12. Functions represented by integrals -- 13. Generalized domain potentials -- 14. Generalized single layer potentials -- 15. Generalized double layer potentials -- 16. Construction of functions satisfying assigned boundary conditions -- III. Transformation of the boundary value problems into integral equations -- 17. Review of basic knowledge about integral equations -- 18. The method of potentials -- 19. Existence of fundamental solutions. Unique continuation property -- 20. Principal fundamental solutions -- 21. Transformation of the Dirichlet problem into integral equations -- 22. Transformation of Neumannโ{128}{153}s problem into integral equations -- 23. Transformation of the oblique derivative problem into integral equations -- 24. The method of the quasi-Greenโ{128}{153}s functions -- IV Generalized solutions of the boundary value problems. -- 25. Generalized elliptic operators -- 26. Equations with singular coefficients and known terms -- 27. Local properties of the solutions of elliptic equationsโ{128}ฆ -- 28. Generalized solutions according to Wiener of Dirichle?s problem -- 29. Generalized boundary conditions -- 30. Weak solutions of the boundary value problems -- 31. The method of Fischer-Riesz equations -- 32. The method of the minimum -- V. A priori majorization of the solutions of the boundary value problems -- 33. Orders of magnitude of the successive derivatives of a function and of their Hร{150}LDER coefficients -- 34. Majorization in C(N,?) of the solutions of equations with constant coefficients -- 35. General majorization formulas in C(n,?) -- 36. Method of continuation for the proof of the existence theorem for Dirichรฌe?s problem -- 37. General majorization formulas in Hk,p -- 38. Existence and regularization theorems -- 39. A priori bounds for the solutions of the second and third boundary value problem -- VI. Nonlinear equations -- 40. General properties of the solutions -- 41. Functional equations in abstract spaces -- 42. Dirichle?s problem for equations in m variables -- 43. Dirichle?s problem for equations in two variables -- 44. Equations in the analytic field -- 45. Equations in parametric form -- 46. The Neumann and oblique derivative problems -- 47. Equations of particular type -- VII. Other research on equations of second order. Equations of higher order. Systems of equations -- 48. Second order equations on a manifold -- 49. Second order equations in unbounded domains -- 50. Other problems for second order equations -- 51. Inverse problems and axiomatic theory for second order equations -- 52. Equations of higher order -- 53. Systems of equations of the first order -- 54. Canonical form of elliptic equations -- 55. Systems of higher order equations -- 56. Degenerate elliptic equations. Questions of a small parameter -- Author Index