Author | Winkler, Gerhard. author |
---|---|
Title | Image Analysis, Random Fields and Markov Chain Monte Carlo Methods [electronic resource] : A Mathematical Introduction / by Gerhard Winkler |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003 |
Edition | Second Edition |
Connect to | http://dx.doi.org/10.1007/978-3-642-55760-6 |
Descript | XVI, 387 p. online resource |
I. Bayesian Image Analysis: Introduction -- 1. The Bayesian Paradigm -- 2. Cleaning Dirty Pictures -- 3. Finite Random Fields -- II. The Gibbs Sampler and Simulated Annealing -- 4. Markov Chains: Limit Theorems -- 5. Gibbsian Sampling and Annealing -- 6. Cooling Schedules -- III. Variations of the Gibbs Sampler -- 7. Gibbsian Sampling and Annealing Revisited -- 8. Partially Parallel Algorithms -- 9. Synchronous Algorithms -- IV. Metropolis Algorithms and Spectral Methods -- 10. Metropolis Algorithms -- 11. The Spectral Gap and Convergence of Markov Chains -- 12. Eigenvalues, Sampling, Variance Reduction -- 13. Continuous Time Processes -- V. Texture Analysis -- 14. Partitioning -- 15. Random Fields and Texture Models -- 16. Bayesian Texture Classification -- VI. Parameter Estimation -- 17. Maximum Likelihood Estimation -- 18. Consistency of Spatial ML Estimators -- 19. Computation of Full ML Estimators -- VII. Supplement -- 20. A Glance at Neural Networks -- 21. Three Applications -- VIII. Appendix -- A. Simulation of Random Variables -- A.1 Pseudorandom Numbers -- A.2 Discrete Random Variables -- A.3 Special Distributions -- B. Analytical Tools -- B.1 Concave Functions -- B.2 Convergence of Descent Algorithms -- B.3 A Discrete Gronwall Lemma -- B.4 A Gradient System -- C. Physical Imaging Systems -- D. The Software Package AntslnFields -- References -- Symbols