Author | Davis, Jon H. author |
---|---|
Title | Methods of Applied Mathematics with a MATLAB Overview [electronic resource] / by Jon H. Davis |
Imprint | Boston, MA : Birkhรคuser Boston : Imprint: Birkhรคuser, 2004 |
Connect to | http://dx.doi.org/10.1007/978-0-8176-8198-2 |
Descript | XIII, 721 p. online resource |
1 Introduction -- 1.1 An Overview -- 1.2 Topics by Chapter -- 1.3 Applying Mathematics -- References -- 2 Fourier Series -- 2.1 Introduction -- 2.2 Inner Products and Fourier Expansions -- 2.3 Convergence of Fourier Series -- 2.4 Pointwise and Uniform Convergence of Fourier Series -- 2.5 Gibbโ{128}{153}s Phenomenon and Summation Methods -- 2.6 Summation Methods -- 2.7 Fourier Series Properties -- 2.8 Periodic Solutions of Differential Equations -- 2.9 Impedance Methods and Periodic Solutions -- 2.10 Power Spectrum and Parsevalโ{128}{153}s Theorem -- References -- 3 Elementary Boundary Value Problems -- 3.1 Introduction -- 3.2 The One-Dimensional Diffusion Equation -- 3.3 The Wave Equation -- 3.4 The Potential Equation -- 3.5 Discrete Models of Boundary Value Problems -- 3.6 Separation of Variables -- 3.7 Half-Range Expansions and Symmetries -- 3.8 Some Matters of Detail -- References -- 4 Sturm-Liouville Theory and Boundary Value Problems -- 4.1 Further Boundary Value Problems -- 4.2 Selfadjoint Eigenvalue Problems -- 4.3 Sturm-Liouville Problems -- 4.4 Power Series and Singular Sturm-Liouville Problems -- 4.5 Cylindrical Problems and Besselโ{128}{153}s Equation -- 4.6 Multidimensional Problems and Forced Systems -- 4.7 Finite Differences and Numerical Methods -- 4.8 Variational Models and Finite Element Methods -- 4.9 Computational Finite Element Methods -- References -- 5 Functions of a Complex Variable -- 5.1 Complex Variables and Analytic Functions -- 5.2 Domains of Definition of Complex Functions -- 5.3 Integrals and Cauchyโ{128}{153}s Theorem -- 5.4 Cauchyโ{128}{153}s Integral Formula, Taylor Series, and Residues -- 5.5 Complex Variables and Fluid Flows -- 5.6 Conformal Mappings and the Principle of the Argument -- References -- 6 Laplace Transforms -- 6.1 Introduction -- 6.2 Definitions of the Laplace Transform -- 6.3 Mechanical Properties of Laplace Transforms -- 6.4 Elementary Transforms and Fourier Series Calculations -- 6.5 Elementary Applications to Differential Equations -- 6.6 Convolutions, Impulse Responses, and Weighting Patterns -- 6.7 Vector Differential Equations -- 6.8 Impedance Methods -- References -- 7. Fourier Transforms -- 7.1 Introduction -- 7.2 Basic Fourier Transforms -- 7.3 Formal Properties of Fourier Transforms -- 7.4 Convolutions and Parsevalโ{128}{153}s Theorem -- 7.5 Comments on the Inversion Theorem -- 7.6 Fourier Inversion by Contour Integration -- 7.7 The Laplace Transform Inversion Integral -- 7.8 An Introduction to Generalized Functions -- 7.9 Fourier Transforms, Differential Equations and Circuits -- 7.10 Transform Solutions of Boundary Value Problems -- 7.11 Band-limited Functions and Communications -- References -- 8 Discrete Variable Transforms -- 8.1 Some Discrete Variable Models -- 8.2 Z-Transforms -- 8.3 Z-Transform Properties -- 8.4 z-Transform Inversion Integral -- 8.5 Discrete Fourier Transforms -- 8.6 Discrete Fourier Transform Properties -- 8.7 Some Applications of Discrete Transform Methods -- 8.8 Finite and Fast Fourier Transforms -- 8.9 Finite Fourier Properties -- 8.10 Fast Finite Transform Algorithm -- 8.11 Computing The 1-1.1 -- References -- 9 Additional Topics -- 9.1 Local Waveform Analysis -- 9.2 Uncertainty Principle -- 9.3 Short-Time Fourier Transforms -- 9.4 Function Shifts and Scalings -- 9.5 Orthonormal Shifts -- 9.6 Multi-Resolution Analysis and Wavelets -- 9.7 On Wavelet Applications -- 9.8 Two-Sided Transforms -- 9.9 Walsh Functions -- 9.10 Geometrically Based Transforms -- References -- A Linear Algebra Overview -- A.1 Vector spaces -- A.2 Linear Mappings -- A.3 Inner Products -- A.4 Linear Functionals and Dual Spaces -- A.5 Canonical Forms -- References -- B Software Resources -- B.1 Computational and Visualization Software -- B.2 MATLAB Data Structures -- B.3 MATLAB Operators and Syntax -- B.4 MATLAB Programming Structures -- B.5 MATLAB Programs and Scripts -- B.6 Common Idioms -- B.7 Graphics -- B.8 Toolboxes and Enhancemants -- References -- C Transform Tables -- C.1 Laplace Transforms -- C.2 Fourier Transforms -- C.3 Z Transforms -- C.4 Discrete Fourier Transforms