

Reaction Searching using DiscoveryGate

DiscoveryGate ${ }^{\circledR}$ Exercise Guide

Reaction Searching using DiscoveryGate

DiscoveryGate ${ }^{\circledR}$ Exercise Guide

Symyx Technologies, Inc.
2440 Camino Ramon
San Ramon, CA 94583

© Copyright 2008 Symyx Technologies, Inc. ("Symyx"). All rights reserved.
No part of this document may be reproduced by any means except as permitted in writing by Symyx.
U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The materials are provided with RESTRICTED RIGHTS. Use, duplication or disclosure by: (i) the Department of Defense ("DOD") shall be subject to Symyx Technology, Inc.'s standard commercial license and (ii) by any unit or agency of the U.S. Government other than the DOD, shall be governed by clause 52.227-19(c) of the FAR (or any successor regulations) and (iii) by NASA, shall be governed by clause 48 1827.405(a) (or any successor regulations) and, in any such case, the U.S. Government acquires only "restricted rights" in the materials. Contractor/Manufacturer is: Symyx Technologies, Inc. 2440 Camino Ramon, San Ramon, CA 94583.

Symyx and DiscoveryGate are registered trademarks in the United States, of Symyx Technologies, Inc. All other product names may be trademarks or registered trademarks of their respective holders in the United States and other countries.

Developed: May 2008, Symyx Educational Services

Exercise descriptions

Exercise 1

Exercise 2

- Conduct a reaction substructure search for synthesis of keto esters. Examples of the desired transformations are shown below. Do not draw each of the reactions shown. Draw a single reaction that is representative of the desired transformation.

- View the details for one of the reactions retrieved.

For a step-by-step solution, see page 1-4.
The following descriptions explain the goal of each exercise. If you like to figure things out on your own, use the descriptions to conduct the exercises. If you prefer step-bystep instructions, go to the page listed below the description.

\longrightarrow

- Conduct a search to retrieve methods for preparing azo compounds from aniline. Examples of the desired transformations are shown below. Do not draw each of the reactions shown. Draw a single reaction that is representative of the desired transformation. Use substitution count to specify the unsubstituted nitrogen on the reactant and prevent amine oxides in the product.
\qquad

- Use one of the reactions retrieved to find similar reactions in IMRW.

For a step-by-step solution, see page 1-7.

Exercise 3

- Search for the reduction of a halogenated aromatic nitro group to a primary amine. An example of this type of reaction is shown below.

- Use one of the reactions retrieved to find similar reactions in MDL Patent Chemistry.

For a step-by-step solution, see page 1-11.

Exercise 4

- Retrieve synthetic methods for 1,4 benzodiazepine that use THF or ethanol as a solvent. Conduct a substructure search with benzodiazepine as product not reactant. Conduct a formula search for the solvent.

THF	Ethanol
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

- Use one of the reactions retrieved to find similar reactions in CrossFire Beilstein.

For a step-by-step solution, see page 1-17.

Exercise 5

- Retrieve reactions that open epoxide rings with stereo inversion and halogenation. Allow five- and sixmembered rings.

For a step-by-step solution, see page 1-24.

Synthesis of esters

Exercise 1

Launch the MDL Database Browser

Choose the Synthetic Methodology Information database

Draw the reactant

Conduct a reaction substructure search to retrieve methods for the synthesis of keto esters.

1. From the DiscoveryGate home page, click Search Databases.
2. Choose Synthetic Methodology Information from the Database list.
3. Double-click the Reaction box to launch MDL Draw.
4. Click the cyclobutane template. Click the drawing area.

5. Click the All-Purpose Drawing tool. Drag the mouse to draw the two single bonds.

6. Click the single bonds to change them to double.

Draw the reaction arrow

Draw the product
7. Shift-click to select the atoms that you want to change to oxygen. Type $\mathbf{0}$.

8. Click the Arrow tool. Then click the drawing area to the right of the reactant structure.

9. Click the All-Purpose Drawing tool. Drag to draw the carbon framework.

10. Click the bonds to change them to double.

11. Shift-click to select the atoms that you want to change to oxygen. Type $\mathbf{0}$.

Conduct the search

View the search results

12. Click Done.

13. Choose Reaction Substructure as the search type.
14. Click start search. The results are displayed.

15. Click Details for one of the reactions. Scroll to view the data.

[^0]
Exercise 2

Draw the query

Preparation of azo compounds from aniline

Conduct a reaction substructure search using the following query:

1. Click the queries tab.
2. Click the Reset link located to the right of the reaction box.
3. Double-click the Reaction box.
4. Click the benzene template. Click the drawing area to draw two separate rings.

5. Click the All-Purpose Drawing tool. Drag the mouse to draw the bonds shown. Click the single bond to change it to double.

6. Click the benzene template, and then click the end of the single bond to attach the ring.

7. Click the Lasso Select tool. Shift-click to select the atoms that you want to change to nitrogen. Type \mathbf{n}.

8. Right-click one of the selected nitrogen atoms, and choose Number of nonhydrogen substituents.

SSubstitution count X
As Drawn Off 2 3 4 5 6

9. Click As Drawn.

10. Click the Arrow tool. Click the drawing area between the two structures.

11. Click Done.

Conduct the search

From the results, find similar reactions in the Integrated Major Reference Works
12. Choose Reaction Substructure as the search type.
13. Click start search.
14. For one of the reactions retrieved, click Find Similar Reactions. For example:

Cheminform Reaction Library

「 Record\#4
15. Choose Integrated Major Reference Works as the target application. Click Start Search.

16. If necessary, enter your Username and Password to login to the IMRW database.
17. Click a link for Broad, Medium, or Narrow search results from one of the licensed IMRW publications. In this
example, you would click the Narrow: 3Hits link for COFGT.

Results from All Licensed IMRW Publications

- CAC

Broad: 0 Hits Medium: 0 Hits Narrow: 0 Hits

- COFGT

Broad: 5 Hits Medium: 3 Hits Narrow: 3 Hits

- EROS

Broad: 22 Hits Medium: 18 Hits Narrow: 18 Hits

- Science of Synthesis
Broad: 0 Hits Medium: 0 Hits Narrow: 0 Hits

COFGT Results

Query Data

Your Query:
[CLS=broad: 225702704381200 ,medium:265989766633421,narrow: 320813278212335 ,]

3 hits. 5 hits per page

Search Results
2.15 Vinyl- and Arylnitrogen Compounds

1 2.15.8 HYDRAZINES AND RELATED FUNCTIONS
2.15.8.2 Azo Compounds

Related reactions in

- please select-

Go
18. Click the reference link to view the article text. For example:

Other reagents which bring about the oxidation of aromatic amines to the corresponding azo derivatives and more details on the subject may be found in an excellent review by Gilchrist [661]. These include silver oxide on celite, lead tetraacetate, barium manganate, bispyridinesilver permanganate, sodium perborate, and sodium hypochlorite.
Potassium superoxide has been found to be capable of selectively oxidizing ortho- and para -substituted diamines and aminophenols to the corresponding azo compounds in good yield (Equation (58)) [562].

19. Close the IMRW publication windows.

Reduce halogenated aromatic nitro to an amine

Exercise 3

Return to the Query page

Draw the query
3. Double-click the Reaction box.
4. Click the All-Purpose Drawing tool. Draw the fragments shown below. Use the Arrow tool to draw the arrow.

5. To apply the charges, right-click the nitrogen atom in the nitro group. Choose Charge, and then click $\mathbf{+ 1}$.
|

Specify substitution count

Apply Aromatic query bond

Charge				X
+6	+7			
+1	+2	+3	+4	+5
Off				
-1	-2	-3	-4	-5
-6	-7	-8	-9	-10
-11	-12	-13	-14	-15

6. Use the same technique to add the $\mathbf{- 1}$ charge to the oxygen.

7. Right-click the uncharged nitrogen and choose Number of nonhydrogen substituents. Click As Drawn.

8. Shift-click to select the carbon-carbon bonds in the reactant and product fragments. Right-click one of the selected bonds, and choose Query bond type > Aromatic.

Conduct the search

Find similar reactions in CrossFire Beilstein

9. Click Done.
10. Choose Reaction Substructure as the search type.

11. Click start search.

12. For one of the reactions retrieved, click Find Similar Reactions. For example:

Cheminform Reaction Library

Details Synthesize Reactants Find Similar Reactions
「 Record\#1
13. Choose Patent - MDL Database Browser as the target application. Click Start Search.

Ki MDL Database Browser

Please select reaction to search

Please select target appliction
Patent - MDL Database Browser

Start Search
Cancel
14. Click the link for the Narrow Class Code search results.

Reaction Classification Search Results

Reaction Identification Parent. Broad Class Code Parent.Broad Class Code: 13283 Hits Reaction Identification Parent.Medium Class Code Parent.Medium Class Code: 12847 Hits Reaction Identification Parent.Narrow Class Code Parent.Narrow Class Code: 12441 Hits
15. For one of the similar reactions, click Details. For example:

The reaction details are displayed.

Patent Chemistry Reaction 563

Reaction Identification

Reaction Identification record 1 of 1		
Reaction ID	563	
Reactant	Reactant PRN	122294
	Reactant	iodo-methane
	Reactant PRN	134307
	Reactant	N -(2-nitro-5-methylthiophenyl)- N -methylcarbamic acid t -buty\| ester
	Product PRN	134306
Product	Product	2-(N ---butoxycarbonyl- N -methylamino)-4-methylthioaniline
Reaction Specification	full reaction	
Reaction Entry Date	2003/12/24	
Reaction Update Date	2003/12/24	

Reaction Details

Reaction Details record 1 of 1		
Citation	1073	
Topic of interest	Preparation	
Example Name	Example 41	
Location in Patent	Page 126	
Product	Product PRN	134306
	Product	2-(N--butoxycarbonyl-N-methylamino)-4-methylthioaniline
Stage Number	1	
Reactant	Reactant PRN	122294
	Reactant	iodo-methane
	RN	
	Reactant	N -(2-nitro-5-methylthiophenyl)-N-methylcarbamic acid t -butyl ester
Reagent	Reagent PRN	240067
	Reagent	10 percent palladium on carbon
Solvent	Sowent PRN	7574
	Solvent	methanol
	Quantity in Solvent Mixture	300 ml
	Sowent PRN	126957
	Solvent	dioxane
	Quantity in Solvent Mixture	300 ml
Reaction Details Citations	- Patent; Sankyo Company, Limited; Publ.: EP1167357 A1 (2002/01/02), Appl.: EP2000-915361 (2000/04/06)	
Top of Page		

Exercise 4

Construct the query

Build a custom form

Synthesis of benzodiazepine

Conduct a substructure search to retrieve synthetic methods for 1,4 benzodiazepines that use THF or ethanol as a solvent.

$$
\begin{array}{ll}
\text { THF } & \text { Ethanol } \\
\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} & \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}
\end{array}
$$

1. Click queries.
2. Choose Synthetic Methodology Information from the Database list.
3. Click clear form on the top menu bar. Click OK at the confirmation prompt.

4. In the Field Index, open the Molecules > Product folder. Double-click Product Structure.
```
( Reaction
```

5. In the Field Index, open the Molecules > Reactant folder. Double-click Reactant Structure.

Field Index	History
Reaction Molecules Reactant Reactant Structure Reactant Name and Synomyms Reactant Formula Reactant Molecular Weight Reactant CAS Registry Number	

6. In the Field Index, open the Molecules > Solvent folder. Double-click Solvent Formula.

Field Index History

The query form looks like this:

Draw the product structure

Copy and paste the product structure

Set the search type and logic

7. Double-click the Product Structure box. Draw the structure for 1,4 benzodiazepine.

8. Click Done.
9. Right-click the structure in the Product Structure box. Choose Copy.
10. Right-click the Reactant Structure box. Choose Paste.
11. Choose Substructure as the search type for both the Product and Reactant. Then change the logical operator for the Reactant Structure to NOT.

Enter the Solvent query

Use parentheses to clarify search logic

Execute the search

12. For the Solvent field, enter the formula query that will retrieve both THF (C 4 H 8 O) and Ethanol (C2H6O).
Solvent Formula \quad Contains $\quad=1(2-4) h(6-8) 0$
13. Click show brackets. Then apply parentheses around the two structure queries.

14. Click start search.

View details for a reaction

View Toxicity data for a
reaction

Pages: $1 \underline{2} \underline{\mathbf{3}} \underline{4}$ Next Select All Clear All
Cheminform Reaction Library
Records: 42
15. For one of the reactions retrieved, click Details. For example:

ChemInform Reaction Library

Crick on a tink to add the information to this page Г Set current view as default $\frac{\text { Reaction Details (1) }}{\text { Rroduct (1) }} \quad$ Reactant (2)

Detailed Data	Conditions References	External Registry No.	Path	Step
		1050316101	A	4 OF 5
		1050316101	B	4 OF 5

SIROHI, R.; SINGH, A.; SHASTRI, S.; KISHORE, D.; J Indian Chem Soc [JICSAH] 2004, 81 (3), 254-257.
16. Click the Toxicity link for "Also found in." In this example, toxicity data for one of the reactants is retrieved.

Return to Synthetic Methodology Informatio
MDL® Toxicity Database

0 -	Available Data	
	a ink to add the information to this pa	
	\ulcorner Set current view as default	
	Chemical (1)	Acute Toxicity (46)
	Mutagenicity (27)	SkinjEye Iritation (12)
	Reproductive Effects (22)	Other Multiple Doses (15)
	Review (10)	Model (1)

Chemical (hide)
Molecular Formula CH4 O Molecular Weight 32.0416 MDL Number MFCD00004595 CAS Registry Number $54841-71-3, \quad 67-56-1$ Beilstein Number Beilstein Handbook PC1400000 RTECS Number 2301 CCRIS Number 286 GENE-TOX Number GENOTOXICITY Number CARCINO Number 195 HEPATO Number Drug, Human Data, NEPHRO Number Patch Test Compound Descriptor

17. Click Return to Synthetic Methodology Information.

18. Click Return to Search Results.

19. For one of the reactions, click Find Similar Reactions.

Enter Beilstein - MDL Browser as the target application. Click Start Search.

20. Click the narrow results link.

Reaction Classification Search Results

Reaction Parent.Reaction code (broad) Parent.Reaction code (broad): 4 Hits Reaction Parent.Reaction code (broad) Parent.Reaction code (medium): 4 Hits Reaction Parent.Reaction code (broad) Parent.Reaction code (narrow): 4 Hits
21. View the similar reactions retrieved.

Open epoxides with stereo inversion

Exercise 5

Return to Synthetic Methodology Information

Draw the query

Draw stereo bonds

Conduct a reaction substructure search to retrieve reactions of the following type:

1. Click queries.
2. Choose Synthetic Methodology Information from the Database list.
3. Double-click the Reaction box.
4. Click the cyclopentane template. Click the drawing area twice to draw two separate rings.

5. Click the Up Wedge tool. Drag the mouse to draw the wedged bond. For the reactant, join the ends of the two wedge bonds.

6. Click the Down Wedge tool. Drag the mouse to draw the bond on the product.

Add atom symbols

Draw the reaction arrow

Add stereoconfiguration labels
7. Click the Lasso Select tool. Shift-click to select the two atoms that you want to change to oxygen. Type \mathbf{o}.

8. Select the atom that you want to change to chlorine. Type cl.

9. Click the Arrow tool. Click the drawing area between the two structures.

10. Click the Lasso Select tool. Shift-click to select the stereocenters that will invert during the reaction. Rightclick one of the selected atoms and choose Stereoconfiguration at atom > Inverted in reaction.

11. Shift-click to select the stereocenters that will be retained during the reaction. Right-click one of the selected atoms and choose Stereoconfiguration at atom > Retained in reaction.

Add repeat atoms to allow ring expansion
12. Shift-click to select the two atoms that can repeat to expand the rings from five-membered to six-membered rings. Right-click one of the selected atoms and choose Repeat atom 1 to N . Click 2.

13. Click Done.

14. Choose Reaction Substructure as the search type.

15. Click start search.
16. View the details for some of the reactions retrieved. Scroll to view the data. For example:

ChemInform Reaction Library

Reaction Details (hide)
RXC105069381

Product no.	\% Yield	Grade	\%cs	\%ds	\%de	\%ee	Reactant no.	Reactant Grade
1	90		100					

Step no.	Catalysts and Solvents	Catahys ID click ID for details	Solvent ID click ID for details
1	1.5 equiv. 1 -(carboxymethyl)-3-methylimidazolium chloride neat	$\underline{1053340}$	$\underline{372397}$

Detailed Data	$\frac{\text { Conditions }}{\text { References }}$	External Registry No.	Path	Step
		1054406011	A	1 STEP

[^0]: OGUNI, N: TANAKA, K: ISHIDA, H: Smilet ISMUL ESI 1990, (6), 601-602

