บทความที่น่าสนใจประจำเดือนสิงหาคม 2558 สาขาวิทยาศาสตร์และเทคโนโลยี

Title:	Photoperiodic Flowering: Time Measurement Mechanisms in Leaves
Author:	Young Hun Song, Jae Sung Shim, Hannah A. Kinmonth-Schultz, and Takato Imaizumi
Journal:	Annual Review of Plant Biology, Vol. 66, 2015, pages 441-464
Abstract:	Many plants use information about changing day length (photoperiod) to align their flowering time with
	seasonal changes to increase reproductive success. A mechanism for photoperiodic time
	measurement is present in leaves, and the day-length-specific induction of the FLOWERING LOCUS T
	(FT) gene, which encodes florigen, is a major final output of the pathway. Here, we summarize the
	current understanding of the molecular mechanisms by which photoperiodic information is perceived
	in order to trigger FT expression in Arabidopsis as well as in the primary cereals wheat, barley, and
	rice. In these plants, the differences in photoperiod are measured by interactions between circadian-
	clock-regulated components, such as CONSTANS (CO), and light signaling. The interactions happen
	under certain day-length conditions, as previously predicted by the external coincidence model. In
	these plants, the coincidence mechanisms are governed by multilayered regulation with numerous
	conserved as well as unique regulatory components, highlighting the breadth of photoperiodic
	regulation across plant species.
Database:	Annual Reviews

Title:	Terrestrial Ecosystems in a Changing Environment: A Dominant Role for Water
Author:	Carl J. Bernacchi and Andy VanLoocke
Journal:	Annual Review of Plant Biology, Vol. 66, 2015, pages 599–622
Abstract:	Transpiration—the movement of water from the soil, through plants, and into the atmosphere—is the
	dominant water flux from the earth's terrestrial surface. The evolution of vascular plants, while
	increasing terrestrial primary productivity, led to higher transpiration rates and widespread alterations
	in the global climate system. Similarly, anthropogenic influences on transpiration rates are already
	influencing terrestrial hydrologic cycles, with an even greater potential for changes lying ahead.
	Intricate linkages among anthropogenic activities, terrestrial productivity, the hydrologic cycle, and
	global demand for ecosystem services will lead to increased pressures on ecosystem water demands.
	Here, we focus on identifying the key drivers of ecosystem water use as they relate to plant
	physiological function, the role of predicted global changes in ecosystem water uses, trade-offs
	between ecosystem water use and carbon uptake, and knowledge gaps.
Database:	Annual Reviews

2

Title:	Engineering Plastid Genomes: Methods, Tools, and Applications in Basic Research and Biotechnology
Author:	Ralph Bock
Journal:	Annual Review of Plant Biology, Vol. 66, 2015, pages 211–241
Abstract:	The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic
	transformation, generating cells and plants with transgenic plastid genomes, also referred to as
	transplastomic plants. The transformation process relies on homologous recombination, thereby
	facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted
	insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze
	chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a
	large toolbox has been assembled that is now nearly comparable to the techniques available for plant
	nuclear transformation and that has enabled new applications of transplastomic technology in basic
	and applied research. This review describes the state of the art in engineering the plastid genomes of
	algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome
	engineering, discusses current technological limitations, and highlights selected applications that
	demonstrate the immense potential of chloroplast transformation in several key areas of plant
	biotechnology.
Database:	Annual Reviews

1	Title:	PIN proteins and the evolution of plant development
	Author:	Tom Bennett
	Journal:	Trends in Plant Science, Volume 20, Issue 8, August 2015, Pages 498–507
	Abstract:	Many aspects of development in the model plant Arabidopsis thaliana involve regulated distribution of
		the hormone auxin by the PIN-FORMED (PIN) family of auxin efflux carriers. The role of PIN-mediated
		auxin transport in other plants is not well understood, but studies in a wider range of species have
		begun to illuminate developmental mechanisms across land plants. In this review, I discuss recent
		progress in understanding the evolution of PIN-mediated auxin transport, and its role in development
		across the green plant lineage. I also discuss the idea that changes in auxin biology led to
		morphological novelty in plant development: currently available evidence suggests major innovations
		in auxin transport are rare and not associated with the evolution of new developmental mechanisms.
	Database:	ScienceDirect

5	Title:	Transport of defense compounds from source to sink: lessons learned from glucosinolates	
	Author:	Morten Egevang Jørgensen, Hussam Hassan Nour-Eldin, Barbara Ann Halkier	
	Journal:	Trends in Plant Science, Volume 20, Issue 8, August 2015, Pages 508-514	

Abstract:	Plants synthesize a plethora of defense compounds crucial for their survival in a challenging and
	changing environment. Transport processes are important for shaping the distribution pattern of
	defense compounds, albeit focus hitherto has been mostly on their biosynthetic pathways. A recent
	identification of two glucosinolate transporters represents a breakthrough in our understanding of
	glucosinolate transport in Arabidopsis and has advanced knowledge in transport of defense
	compounds. In this review, we discuss the role of the glucosinolate transporters in establishing
	dynamic glucosinolate distribution patterns and source-sink relations. We focus on lessons learned
	from glucosinolate transport that may apply to transport of other defense compounds and discuss
	future avenues in the emerging field of defense compound transport.
Database:	ScienceDirect

6	Title:	Impact of Diseases on Export and Smallholder Production of Banana
	Author:	Randy C. Ploetz, Gert H.J. Kema, and Li-Jun Ma
	Journal:	Annual Review of Phytopathology, Vol. 53, 2015, pages 269-288
	Abstract:	Banana (Musa spp.) is one of the world's most valuable primary agricultural commodities. Exported
		fruit are key commodities in several producing countries yet make up less than 15% of the total annual
		output of 145 million metric tons (MMT). Transnational exporters market fruit of the Cavendish cultivars,
		which are usually produced in large plantations with fixed infrastructures and high inputs of fertilizers,
		pesticides, and irrigation. In contrast, smallholders grow diverse cultivars, often for domestic markets,
		with minimal inputs. Diseases are serious constraints for export as well as smallholder production.
		Although black leaf streak disease (BLSD), which is present throughout Asian, African, and American
		production areas, is a primary global concern, other diseases with limited distributions, notably tropical
		race 4 of Fusarium wilt, rival its impact. Here, we summarize recent developments on the most
		significant of these problems.
	Database:	Annual Reviews

7	Title:	Range-Expanding Pests and Pathogens in a Warming World
	Author:	Daniel Patrick Bebber
	Journal:	Annual Review of Phytopathology, Vol. 53, 2015, pages 335–356
	Abstract:	Crop pests and pathogens (CPPs) present a growing threat to food security and ecosystem
		management. The interactions between plants and their natural enemies are influenced by
		environmental conditions and thus global warming and climate change could affect CPP ranges and
		impact. Observations of changing CPP distributions over the twentieth century suggest that growing
		agricultural production and trade have been most important in disseminating CPPs, but there is some
		evidence for a latitudinal bias in range shifts that indicates a global warming signal. Species

	distribution models using climatic variables as drivers suggest that ranges will shift latitudinally in the
	future. The rapid spread of the Colorado potato beetle across Eurasia illustrates the importance of
	evolutionary adaptation, host distribution, and migration patterns in affecting the predictions of climate-
	based species distribution models. Understanding species range shifts in the framework of ecological
	niche theory may help to direct future research needs.
Database:	Annual Reviews

	Title:	Highways in the Sky: Scales of Atmospheric Transport of Plant Pathogens
	Author:	David G. Schmale III and Shane D. Ross
	Journal:	Annual Review of Phytopathology, Vol. 53, 2015, pages 591–611
	Abstract:	Many high-risk plant pathogens are transported over long distances (hundreds of meters to thousands
		of kilometers) in the atmosphere. The ability to track the movement of these pathogens in the
		atmosphere is essential for forecasting disease spread and establishing effective quarantine
		measures. Here, we discuss the scales of atmospheric dispersal of plant pathogens along a transport
		continuum (pathogen scale, farm scale, regional scale, and continental scale). Growers can use risk
l		information at each of these dispersal scales to assist in making plant disease management decisions,
I		such as the timely application of appropriate pesticides. Regional- and continental-scale atmospheric
I		features known as Lagrangian coherent structures (LCSs) may shuffle plant pathogens along highways
l		in the sky. A promising new method relying on overlapping turbulent back-trajectories of pathogen-
		laden parcels of air may assist in localizing potential inoculum sources, informing local and/or regional
		management efforts such as conservation tillage. The emergence of unmanned aircraft systems
ı		(UASs, or drones) to sample plant pathogens in the lower atmosphere, coupled with source localization
ı		efforts, could aid in mitigating the spread of high-risk plant pathogens.
	Database:	Annual Reviews
-1		

9	Title:	Transcriptional networks in leaf senescence
	Author:	Jos HM Schippers
	Journal:	Current Opinion in Plant Biology, Volume 27, October 2015, Pages 77–83
	Abstract:	Plant senescence is a natural phenomenon known for the appearance of beautiful autumn colors and
		the ripening of cereals in the field. Senescence is a controlled process that plants utilize to remobilize
		nutrients from source leaves to developing tissues. While during the past decades, molecular
		components underlying the onset of senescence have been intensively studied, knowledge remains
		scarce on the age-dependent mechanisms that control the onset of senescence. Recent advances
		have uncovered transcriptional networks regulating the competence to senesce. Here, gene regulatory

	networks acting as internal timing mechanisms for the onset of senescence are highlighted, illustrating
	that early and late leaf developmental phases are highly connected.
Database:	ScienceDirect

10	Title:	Tracing the evolutionary path to nitrogen-fixing crops
	Author:	Pierre-Marc Delaux, Guru Radhakrishnan, Giles Oldroyd
	Journal:	Current Opinion in Plant Biology, Volume 26, August 2015, Pages 95–99
	Abstract:	Nitrogen-fixing symbioses between plants and bacteria are restricted to a few plant lineages. The plant
		partner benefits from these associations by gaining access to the pool of atmospheric nitrogen. By
		contrast, other plant species, including all cereals, rely only on the scarce nitrogen present in the soil
		and what they can glean from associative bacteria. Global cereal yields from conventional agriculture
		are dependent on the application of massive levels of chemical fertilisers. Engineering nitrogen-fixing
		symbioses into cereal crops could in part mitigate the economic and ecological impacts caused by the
		overuse of fertilisers and provide better global parity in crop yields. Comparative phylogenetics and
		phylogenomics are powerful tools to identify genetic and genomic innovations behind key plant traits.
		In this review we highlight recent discoveries made using such approaches and we discuss how these
		approaches could be used to help direct the engineering of nitrogen-fixing symbioses into cereals.
	Database:	ScienceDirect